• Hot Rolled Steel Wire Rod steel SAE1008 SAE1018  for Construction System 1
  • Hot Rolled Steel Wire Rod steel SAE1008 SAE1018  for Construction System 2
  • Hot Rolled Steel Wire Rod steel SAE1008 SAE1018  for Construction System 3
Hot Rolled Steel Wire Rod steel SAE1008 SAE1018  for Construction

Hot Rolled Steel Wire Rod steel SAE1008 SAE1018 for Construction

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT or LC
Min Order Qty:
1000 m.t.
Supply Capability:
10000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Product Description:

OKorder is offering Hot Rolled Steel Wire Rod steel SAE1008 SAE1018 for Construction at great prices with worldwide shipping. Our supplier is a world-class manufacturer of steel, with our products utilized the world over. OKorder annually supplies products to European, North American and Asian markets. We provide quotations within 24 hours of receiving an inquiry and guarantee competitive prices.

 

Product Applications:

Hot Rolled Steel Wire Rod steel SAE1008 SAE1018 for Construction are ideal for structural applications and are widely used in the construction of buildings and bridges, and the manufacturing, petrochemical, and transportation industries.

 

Product Advantages:

OKorder's Hot Rolled Steel Wire Rod steel SAE1008 SAE1018 for Construction are durable, strong, and resist corrosion.

 

Main Product Features:

·         Premium quality

·         Prompt delivery & seaworthy packing (30 days after receiving deposit)

·         Corrosion resistance

·         Can be recycled and reused

·         Mill test certification

·         Professional Service

·         Competitive pricing

 

Product Specifications:

Steel Grade: Q195      Standard: ASTM, GB

Diameter: 5.5mm, 6.5mm, 7mm,8mm,9mm,10mm,12mm,14mm

6.5mm can be drawing into 2mm/8.0mm can be drawing into 3mm  

Type: Drawn Wire in Coil, each coil weight about 2MT      

Brand Name: N-RIVER   Place of Origin: Hebei, China

Chemical Composition:

Please kindly find our chemistry of our material based on Q195 as below for your information

 

Trademark

Rank

Chemical composition (quality score) %  

C

Si

Mn

S

P

 

 

Q195

 

0.06-0.12

0.30

0.25

0.050

0.045

Trademark

Rank

Pulling Test

Bend PointΔs/Mpa 

Tensile Strength

Elongation Ratioδ5%

Thickness (Diameter) /MM

Thickness (Diameter) /MM

≤16

16-40

≤16

16-40

Q195

 

195

185

315-390

33

32

 

Packaging & Delivery of  Hot Rolled wire rod Steel

1. Packing: it is nude packed in bundles by steel wire rod

2. Bundle weight: not more than 3.5MT for bulk vessel; less than 3 MT for container load

3. Marks:

Color marking: There will be color marking on both end of the bundle for the cargo delivered by bulk vessel. That makes it easily to distinguish at the destination port.

Tag mark: there will be tag mark tied up on the bundles. The information usually including supplier logo and name, product name, made in China, shipping marks and other information request by the customer.

If loading by container the marking is not needed, but we will prepare it as customer request.

4. Transportation: the goods are delivered by truck from mill to loading port, the maximum quantity can be loaded is around 40MTs by each truck. If the order quantity cannot reach the full truck loaded, the transportation cost per ton will be little higher than full load.

5. Delivered by container or bulk vessel

 

FAQ:

Q1: Why buy Materials & Equipment from OKorder.com?

A1: All products offered byOKorder.com are carefully selected from China's most reliable manufacturing enterprises. Through its ISO certifications, OKorder.com adheres to the highest standards and a commitment to supply chain safety and customer satisfaction.

Q2: How do we guarantee the quality of our products?

A2: We have established an advanced quality management system which conducts strict quality tests at every step, from raw materials to the final product. At the same time, we provide extensive follow-up service assurances as required.

Q3: How soon can we receive the product after purchase?

A3: Within three days of placing an order, we will begin production. The specific shipping date is dependent upon international and government factors, but is typically 7 to 10 workdays.

Q4: What makes stainless steel stainless?

A4: Stainless steel must contain at least 10.5 % chromium. It is this element that reacts with the oxygen in the air to form a complex chrome-oxide surface layer that is invisible but strong enough to prevent further oxygen from "staining" (rusting) the surface. Higher levels of chromium and the addition of other alloying elements such as nickel and molybdenum enhance this surface layer and improve the corrosion resistance of the stainless material.

Q5: Can stainless steel rust?

A5: Stainless does not "rust" as you think of regular steel rusting with a red oxide on the surface that flakes off. If you see red rust it is probably due to some iron particles that have contaminated the surface of the stainless steel and it is these iron particles that are rusting. Look at the source of the rusting and see if you can remove it from the surface.

 

Images:

Q: What is the relationship between steel structure and thread steel?
The main material of the steel structure workshop is I-beam and channel steel, which are welded or riveted.
Q: What is the impact of steel rebars on the overall carbon footprint of a construction project?
Steel rebars have a significant impact on the overall carbon footprint of a construction project. The production of steel involves high energy consumption and emits a substantial amount of greenhouse gases. However, steel rebars are essential for reinforcing concrete structures, which have a long lifespan and can contribute to the sustainability and durability of a building. To mitigate their carbon impact, using recycled steel rebars and optimizing their design and placement can help reduce the overall carbon footprint of a construction project.
Q: What is the corrosion resistance of steel rebars?
The corrosion resistance of steel rebars is generally high due to the presence of a protective oxide layer on the surface of the steel. However, in certain environments, such as those with high levels of moisture or exposure to corrosive substances, the rebars may be susceptible to corrosion. Therefore, additional measures such as proper concrete cover, epoxy coating, or galvanization are often employed to enhance the corrosion resistance of steel rebars.
Q: How do steel rebars affect the overall flexibility of concrete structures?
Steel rebars greatly enhance the overall flexibility of concrete structures. The addition of steel rebars to concrete increases its tensile strength, allowing it to better resist cracking and deformation under load. Concrete on its own is strong in compression, but weak in tension. By incorporating steel rebars within the concrete, it creates a composite material that combines the compressive strength of concrete with the tensile strength of steel. The rebars act as reinforcement, distributing the load across the structure and preventing the concrete from failing in tension. This reinforcement helps to limit the formation and propagation of cracks, as the rebars bear the tensile stress and prevent the concrete from completely separating. Consequently, the presence of rebars greatly enhances the overall flexibility and ductility of the concrete structure by enabling it to withstand various forces and movements without catastrophic failure. Moreover, steel rebars also improve the structural stability of concrete elements. By providing additional strength and support, they help to prevent excessive deflection, bending, or buckling of the structure, ensuring it can withstand external loads and environmental conditions. This increased flexibility and stability contribute to the durability and longevity of the concrete structure, making it more resistant to factors such as seismic activity, temperature fluctuations, and shrinkage. In summary, steel rebars play a crucial role in enhancing the overall flexibility of concrete structures. They provide the necessary tensile strength to counteract the inherent weakness of concrete in tension, preventing cracking and deformation. By reinforcing the structure, steel rebars improve its stability, durability, and ability to withstand various forces and movements, thereby ensuring the structural integrity and longevity of the concrete elements.
Q: What is the standard diameter of steel rebars?
Steel rebars usually have a standard diameter that falls between 6 millimeters and 50 millimeters. The most frequently used diameters are 10 millimeters, 12 millimeters, 16 millimeters, and 20 millimeters. The choice of a particular diameter for a steel rebar depends on the specific application and the structural demands of the construction project. These rebars are commonly employed in reinforced concrete structures to bolster their tensile strength and overall endurance.
Q: Are there any standards or codes for steel rebars?
Certainly, steel rebars are subject to standards and codes that are essential for guaranteeing their quality, safety, and compatibility across various construction projects. One of the most widely recognized standards for steel rebars is the ASTM A615/A615M, which is responsible for specifying the requirements of deformed and plain carbon-steel bars used in concrete reinforcement. This standard covers a range of physical and mechanical properties, including chemical composition, yield strength, tensile strength, elongation, and bendability. It also provides guidelines for marking, packaging, and testing of rebars. In addition to the ASTM A615/A615M, there are other relevant standards and codes utilized in different countries and regions. For instance, in Europe, the European Standard EN 10080 outlines the specifications for steel rebars, including dimensions, tolerances, and mechanical properties. Similarly, the British Standard BS 4449 is widely employed in the United Kingdom for steel reinforcement in concrete. These standards and codes play a pivotal role not only in ensuring consistency during the manufacturing and production of steel rebars but also in aiding architects, engineers, and construction professionals in selecting the most suitable rebars for their projects. Compliance with these standards is of utmost importance to ensure the structural integrity, durability, and safety of reinforced concrete structures. It is imperative for stakeholders in the construction industry to acquaint themselves with the pertinent standards and codes for steel rebars and consistently adhere to them. This practice helps to uphold high-quality construction protocols and mitigate the risk of failures or accidents caused by substandard materials.
Q: How are steel rebars stored to prevent damage?
Steel rebars are typically stored in an organized manner, either horizontally or vertically, to prevent damage. They are often placed on pallets or racks, ensuring they are off the ground to avoid contact with moisture. Additionally, rebars are often covered with tarps or protective materials to shield them from exposure to weather elements and potential rusting. Regular inspections are conducted to ensure rebars are not bent, twisted, or damaged, and any defective pieces are removed to maintain their structural integrity.
Q: How do steel rebars affect the thermal properties of a structure?
The thermal properties of a building or structure can be significantly influenced by steel rebars, which are commonly used in reinforced concrete structures. To begin with, steel rebars have a higher thermal conductivity than concrete. This means that when embedded within concrete, they can serve as thermal bridges, allowing heat to easily transfer through the structure. Consequently, there is increased heat loss during colder months and increased heat gain during warmer months, leading to higher energy consumption for heating and cooling. Additionally, the thermal expansion and contraction of the structure can be affected by steel rebars. Compared to concrete, steel has a higher coefficient of thermal expansion, causing it to expand and contract more with temperature changes. This differential movement between the steel rebars and the surrounding concrete can result in cracks and structural deformations, compromising the overall thermal performance of the structure. Moreover, the moisture behavior of a structure can also be influenced by steel rebars. As previously mentioned, steel has a higher thermal conductivity and electrical conductivity than concrete. This electrical conductivity can promote the corrosion of steel rebars when they come into contact with moisture or water. Consequently, corrosion leads to the formation of rust, which expands and further damages the surrounding concrete. This, in turn, increases moisture ingress, compromising the insulation properties of the structure and potentially causing mold growth and other moisture-related issues. To conclude, steel rebars have direct and indirect impacts on the thermal properties of a structure. They act as thermal bridges, affecting heat transfer, and their differential thermal expansion and corrosion potential can compromise the overall thermal performance and moisture behavior of the structure. Proper design, insulation, and corrosion protection measures should be implemented to mitigate these effects and ensure optimal thermal performance.
Q: What are the guidelines for proper spacing and lapping of steel rebars in concrete structures?
The guidelines for proper spacing and lapping of steel rebars in concrete structures vary depending on the specific design and structural requirements. However, some general recommendations exist. The rebars should be adequately spaced to ensure proper concrete cover, allowing for corrosion protection and sufficient bond strength. Typically, the minimum spacing between parallel rebars is around 1.5 times the diameter of the larger bar or 25 mm (1 inch), whichever is greater. Lapping, or overlapping, of rebars is necessary to create a continuous load path. The length of the overlap depends on the design and the type of rebar connection being used. It is important to follow the specifications provided by structural engineers and adhere to local building codes to ensure the proper spacing and lapping of rebars in concrete structures.
Q: How do steel rebars enhance the load-bearing capacity of a structure?
Steel rebars serve to enhance the load-bearing capacity of a structure by reinforcing and strengthening the concrete. Essentially, they are embedded within the concrete, acting as a skeleton or framework that provides additional strength to the structure. The main purpose of steel rebars is to withstand tension forces that the concrete alone may not be able to withstand. When a structure is subjected to heavy loads or external forces, such as earthquakes or wind, the concrete may crack or fail under the stress. However, the steel rebars help distribute and absorb these forces, preventing the concrete from breaking apart. The ribbed surface of the rebars improves the bond between the steel and the concrete, ensuring effective transfer of loads between the two materials. This bond allows the rebars to resist tension and compression forces, as well as shear forces, resulting in an overall increase in load-bearing capacity. Moreover, steel rebars help control and limit the width and depth of cracks that may occur in the concrete. By restraining crack propagation, rebars prevent the cracks from expanding and compromising the structural integrity of the building. This is particularly crucial in earthquake-prone regions, where a structure's ability to withstand ground movements is of utmost importance. Additionally, steel rebars contribute to the durability and longevity of a structure. They possess high tensile strength, enabling them to withstand significant pulling forces without deforming or breaking. This property ensures that the structure remains stable and secure over time, even under dynamic or extreme loading conditions. In conclusion, steel rebars play a vital role in enhancing the load-bearing capacity of a structure by reinforcing the concrete, increasing its resistance to tension forces, and controlling crack propagation. Their presence significantly improves the structural integrity, durability, and safety of buildings, making them an indispensable component in modern construction practices.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords