Hot Rolled Deformed Bar HRB400 or BS449 B500B
- Loading Port:
- Tianjin
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 25 m.t.
- Supply Capability:
- 200000 m.t./month
OKorder Service Pledge
OKorder Financial Service
You Might Also Like
Product Description:
OKorder is offering Product Description:
OKorder is offering Hot Rolled Deformed Bar HRB400 or BS449 B500B at great prices with worldwide shipping. Our supplier is a world-class manufacturer of steel, with our products utilized the world over. OKorder annually supplies products to European, North American and Asian markets. We provide quotations within 24 hours of receiving an inquiry and guarantee competitive prices.
Product Applications:
Deformed bar is widely used in buildings, bridges, roads and other engineering construction. Big to highways, railways, bridges, culverts, tunnels, public facilities such as flood control, dam, small to housing construction, beam, column, wall and the foundation of the plate, deformed bar is an integral structure material. With the development of world economy and the vigorous development of infrastructure construction, real estate, the demand for deformed bar will be larger and larger
Product Advantages:
OKorder's Hot Rolled Deformed Bar HRB400 or BS449 B500B are durable, strong, and resist corrosion, exact size, regular package, chemical and mechanical properties are stable.
Main Product Features:
· Premium quality
· Prompt delivery & seaworthy packing (30 days after receiving deposit)
· Corrosion resistance
· Can be recycled and reused
· Mill test certification
· Professional Service
· Competitive pricing
Product Specifications:
Manufacture: Hot rolled
Grade: BS4449
Certificates: ISO, SGS, BV, CIQ
Diameter: 6mm,8mm,10mm,12mm,14mm,16mm,18mm,20mm,
22mm,25mm,28mm,32mm,36mm,40mm,50mm
Length: 6M, 9M,12M or as required
Packaging: Export packing, nude packing, bundled
Chemical Composition: (Please kindly find our chemistry of our material based on HRB500 as below for your information)
Grade | Technical data of the original chemical composition (%) | ||||||
C | Mn | Si | S | P | V | ||
HRB400 | ≤0.25 | ≤1.60 | ≤0.80 | ≤0.045 | ≤0.045 | 0.04-0.12 | |
Physical capability | |||||||
Yield Strength (N/cm²) | Tensile Strength (N/cm²) | Elongation (%) | |||||
≥400 | ≥570 | ≥14 | |||||
Theoretical weight and section area of each diameter as below for your information:
Diameter(mm) | Section area (mm²) | Mass(kg/m) | Weight of 12m bar(kg) |
6 | 28.27 | 0.222 | 2.664 |
8 | 50.27 | 0.395 | 4.74 |
10 | 78.54 | 0.617 | 7.404 |
12 | 113.1 | 0.888 | 10.656 |
14 | 153.9 | 1.21 | 14.52 |
16 | 201.1 | 1.58 | 18.96 |
18 | 254.5 | 2.00 | 24 |
20 | 314.2 | 2.47 | 29.64 |
22 | 380.1 | 2.98 | 35.76 |
25 | 490.9 | 3.85 | 46.2 |
28 | 615.8 | 4.83 | 57.96 |
32 | 804.2 | 6.31 | 75.72 |
36 | 1018 | 7.99 | 98.88 |
40 | 1257 | 9.87 | 118.44 |
50 | 1964 | 15.42 | 185.04 |
FAQ:
Q1: How do we guarantee the quality of our products?
A1: We have established an advanced quality management system which conducts strict quality tests at every step, from raw materials to the final product. At the same time, we provide extensive follow-up service assurances as required.
Q2: What makes stainless steel stainless?
Within three days of placing an order, we will begin production. The specific shipping date is dependent upon international and government factors, but is typically 7 to 10 workdays.
Q3: What makes stainless steel stainless?
A3: Stainless steel must contain at least 10.5 % chromium. It is this element that reacts with the oxygen in the air to form a complex chrome-oxide surface layer that is invisible but strong enough to prevent further oxygen from "staining" (rusting) the surface. Higher levels of chromium and the addition of other alloying elements such as nickel and molybdenum enhance this surface layer and improve the corrosion resistance of the stainless material.
- Q: How do steel rebars affect the overall longevity of a structure?
- Steel rebars, also known as reinforcement bars, play a crucial role in enhancing the overall longevity of a structure. By providing strength and durability, rebars reinforce the concrete, making it more resistant to cracking and structural failure. This reinforcement ensures that the structure can withstand various external forces, such as extreme weather conditions, seismic activity, and heavy loads. Consequently, the use of steel rebars significantly extends the lifespan of a structure, ensuring its long-term stability and safety.
- Q: How do steel rebars impact the overall energy efficiency of a structure?
- Steel rebars can have both positive and negative impacts on the overall energy efficiency of a structure. On one hand, steel rebars can enhance the structural integrity and durability of the building, leading to a longer lifespan and reduced energy consumption for repairs and maintenance. Additionally, steel rebars can be used to reinforce concrete, which provides better insulation and thermal efficiency. On the other hand, the production of steel rebars requires significant energy and emits greenhouse gases, contributing to the carbon footprint of the structure. Therefore, the overall energy efficiency of a structure depends on various factors, including the design, construction techniques, and the use of sustainable materials alongside steel rebars.
- Q: Can steel rebars be used in structures with high aesthetic requirements?
- Yes, steel rebars can be used in structures with high aesthetic requirements. While rebars are primarily used for their structural strength and reinforcement purposes, they can also be incorporated into architectural designs to enhance the visual appeal of a structure. With various surface finishes and coatings available, steel rebars can be customized to meet specific aesthetic requirements, ensuring they blend seamlessly with the overall design and aesthetics of the structure.
- Q: How do steel rebars improve the ductility of concrete?
- Steel rebars improve the ductility of concrete by acting as reinforcement within the material. The presence of rebars helps to distribute stress and load more evenly throughout the concrete structure, making it more resistant to cracks and fractures. This reinforcement also allows the concrete to withstand bending and stretching forces, enhancing its overall flexibility and ability to deform without failing.
- Q: What are the different methods for attaching steel rebars to existing structures?
- There are several methods for attaching steel rebars to existing structures, depending on the specific requirements and conditions of the project. Some common methods include: 1. Welding: This method involves using welding techniques to attach the rebars to the existing structure. It provides a strong and durable connection, but it requires skilled labor and may not be suitable for all situations. 2. Epoxy bonding: Epoxy adhesives can be used to bond rebars to existing structures. This method is easy to apply and provides a reliable connection, especially when the rebars are embedded in concrete. However, it is important to ensure proper surface preparation and follow manufacturer's instructions for best results. 3. Mechanical anchoring: Mechanical anchors, such as anchor bolts or expansion anchors, can be used to attach rebars to existing structures. This method involves drilling holes into the structure and inserting the anchor, which provides a secure connection. It is important to select the appropriate anchor type and size based on the load requirements and structural conditions. 4. Clamping or fastening: In some cases, rebars can be attached to existing structures using clamps or fasteners. This method is relatively quick and easy to install, but it may not provide as strong of a connection as welding or epoxy bonding. 5. Overlapping: When reinforcing existing concrete structures, rebars can be overlapped with the existing reinforcement and tied together using wire or other methods. This method is commonly used in construction to ensure continuity of reinforcement and increase the load-carrying capacity. It is important to consult with structural engineers or professionals with expertise in rebar installation to determine the most suitable method for attaching steel rebars to existing structures. They will consider factors such as structural integrity, load requirements, and local building codes to ensure a safe and effective connection.
- Q: How do steel rebars contribute to the durability of concrete?
- There are multiple ways in which steel rebars contribute to the durability of concrete. To begin with, they reinforce the concrete structure, thereby increasing its overall strength. Acting as a framework within the concrete, the steel rebars assist in distributing the load and resisting external forces. As a result, cracking is prevented and the structural integrity of the concrete is enhanced. Moreover, steel rebars play a role in managing concrete cracking. Due to factors like shrinkage, temperature fluctuations, and external loads, concrete tends to crack. However, by incorporating steel rebars, the concrete becomes capable of withstanding these forces and inhibiting crack propagation. This ensures that the concrete remains intact and resilient over time. Additionally, the presence of steel rebars contributes to the durability of concrete by bolstering its resistance to corrosion. Concrete is permeable, and if exposed to moisture, it can lead to the corrosion of the embedded steel. Fortunately, steel rebars are typically coated with corrosion-resistant materials, which safeguard against this issue. Consequently, the lifespan of the concrete structure is prolonged, ensuring long-term durability. In conclusion, steel rebars are essential in enhancing the durability of concrete through reinforcement, crack control, and corrosion prevention. Their existence not only strengthens the overall structure, but also enhances its ability to withstand external forces, thereby guaranteeing the concrete's longevity.
- Q: How do steel rebars bond with concrete?
- Steel rebars bond with concrete through a process called mechanical interlocking, where the rough surface of rebars provides a strong grip with the concrete. Additionally, during the curing process, a chemical reaction occurs between the alkaline environment of concrete and the iron surface of the rebars, forming a layer of iron oxide that further enhances the bond strength.
- Q: How do steel rebars affect the overall sustainability of bridge constructions?
- The overall sustainability of bridge constructions is greatly improved by the inclusion of steel rebars. Firstly, steel rebars play a crucial role in enhancing the longevity and durability of bridges. They reinforce concrete structures, ensuring that tensile and compressive forces are evenly distributed and minimizing the risk of cracks and structural failure. This results in a longer functional lifespan for the bridge, reducing the need for frequent repairs or replacements and ultimately decreasing material consumption and waste generation. Furthermore, the sustainability of bridge constructions is further enhanced by the high recyclability of steel rebars. Once a bridge reaches the end of its life cycle, the steel rebars can be easily removed and recycled. This reduces the demand for new steel production, conserving natural resources and reducing carbon emissions associated with manufacturing processes. Additionally, the recycling of steel rebars helps mitigate the environmental impacts of mining and extraction activities. In addition, the use of steel rebars enables the design of lighter and more efficient bridge structures. Steel is known for its high strength-to-weight ratio, allowing for the creation of slender and visually appealing bridge designs. By reducing the weight of the bridge, less material is required for construction, resulting in lower energy consumption and carbon emissions during manufacturing, transportation, and construction phases. Furthermore, lighter bridge structures place less strain on the supporting foundation, reducing the need for costly reinforcement measures. In conclusion, the inclusion of steel rebars positively impacts the overall sustainability of bridge constructions in various ways. They enhance durability, reduce the need for repairs or replacements, and minimize waste generation. The recyclability of steel rebars helps conserve natural resources, reduce carbon emissions, and mitigate environmental impacts. Additionally, the use of steel rebars allows for the design of lighter and more efficient bridge structures, resulting in lower energy consumption and associated carbon emissions.
- Q: Is the shear wall concealed column stirrup steel or round steel? What are you asking for?
- Now the shear walls, columns and stirrups are basically round steel bars, and their requirements are as follows: 6.5~12 mm in diameter steel bars, most of the reel into a disk; 12~40 mm in diameter, usually 6~12 meters long straight bar. I grade steel (Q235 steel) are rolling for smooth circular section, supply form of material, diameter of not more than 12mm, the length is 6m~12m.
- Q: What are the standards and specifications for steel rebars?
- The standards and specifications for steel rebars vary depending on the country and industry. However, some common standards followed globally include ASTM A615/A615M, ASTM A706/A706M, BS 4449:2005, and EN 10080. These standards define the requirements for the chemical composition, mechanical properties, dimensions, and tolerances of steel rebars used in construction and infrastructure projects. Additionally, specific projects or organizations may have their own additional specifications to ensure the quality and performance of the rebars.
Send your message to us
Hot Rolled Deformed Bar HRB400 or BS449 B500B
- Loading Port:
- Tianjin
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 25 m.t.
- Supply Capability:
- 200000 m.t./month
OKorder Service Pledge
OKorder Financial Service
Similar products
Hot products
Hot Searches
Related keywords