Hot Rolled Deformed Bar HRB400 or BS449 B500B
- Loading Port:
- Tianjin
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 25 m.t.
- Supply Capability:
- 200000 m.t./month
OKorder Service Pledge
OKorder Financial Service
You Might Also Like
Product Description:
OKorder is offering Product Description:
OKorder is offering Hot Rolled Deformed Bar HRB400 or BS449 B500B at great prices with worldwide shipping. Our supplier is a world-class manufacturer of steel, with our products utilized the world over. OKorder annually supplies products to European, North American and Asian markets. We provide quotations within 24 hours of receiving an inquiry and guarantee competitive prices.
Product Applications:
Deformed bar is widely used in buildings, bridges, roads and other engineering construction. Big to highways, railways, bridges, culverts, tunnels, public facilities such as flood control, dam, small to housing construction, beam, column, wall and the foundation of the plate, deformed bar is an integral structure material. With the development of world economy and the vigorous development of infrastructure construction, real estate, the demand for deformed bar will be larger and larger
Product Advantages:
OKorder's Hot Rolled Deformed Bar HRB400 or BS449 B500B are durable, strong, and resist corrosion, exact size, regular package, chemical and mechanical properties are stable.
Main Product Features:
· Premium quality
· Prompt delivery & seaworthy packing (30 days after receiving deposit)
· Corrosion resistance
· Can be recycled and reused
· Mill test certification
· Professional Service
· Competitive pricing
Product Specifications:
Manufacture: Hot rolled
Grade: BS4449
Certificates: ISO, SGS, BV, CIQ
Diameter: 6mm,8mm,10mm,12mm,14mm,16mm,18mm,20mm,
22mm,25mm,28mm,32mm,36mm,40mm,50mm
Length: 6M, 9M,12M or as required
Packaging: Export packing, nude packing, bundled
Chemical Composition: (Please kindly find our chemistry of our material based on HRB500 as below for your information)
Grade | Technical data of the original chemical composition (%) | ||||||
C | Mn | Si | S | P | V | ||
HRB400 | ≤0.25 | ≤1.60 | ≤0.80 | ≤0.045 | ≤0.045 | 0.04-0.12 | |
Physical capability | |||||||
Yield Strength (N/cm²) | Tensile Strength (N/cm²) | Elongation (%) | |||||
≥400 | ≥570 | ≥14 | |||||
Theoretical weight and section area of each diameter as below for your information:
Diameter(mm) | Section area (mm²) | Mass(kg/m) | Weight of 12m bar(kg) |
6 | 28.27 | 0.222 | 2.664 |
8 | 50.27 | 0.395 | 4.74 |
10 | 78.54 | 0.617 | 7.404 |
12 | 113.1 | 0.888 | 10.656 |
14 | 153.9 | 1.21 | 14.52 |
16 | 201.1 | 1.58 | 18.96 |
18 | 254.5 | 2.00 | 24 |
20 | 314.2 | 2.47 | 29.64 |
22 | 380.1 | 2.98 | 35.76 |
25 | 490.9 | 3.85 | 46.2 |
28 | 615.8 | 4.83 | 57.96 |
32 | 804.2 | 6.31 | 75.72 |
36 | 1018 | 7.99 | 98.88 |
40 | 1257 | 9.87 | 118.44 |
50 | 1964 | 15.42 | 185.04 |
FAQ:
Q1: How do we guarantee the quality of our products?
A1: We have established an advanced quality management system which conducts strict quality tests at every step, from raw materials to the final product. At the same time, we provide extensive follow-up service assurances as required.
Q2: What makes stainless steel stainless?
Within three days of placing an order, we will begin production. The specific shipping date is dependent upon international and government factors, but is typically 7 to 10 workdays.
Q3: What makes stainless steel stainless?
A3: Stainless steel must contain at least 10.5 % chromium. It is this element that reacts with the oxygen in the air to form a complex chrome-oxide surface layer that is invisible but strong enough to prevent further oxygen from "staining" (rusting) the surface. Higher levels of chromium and the addition of other alloying elements such as nickel and molybdenum enhance this surface layer and improve the corrosion resistance of the stainless material.
- Q:How are steel rebars inspected for quality on construction sites?
- Steel rebars are critical components in construction projects, as they provide reinforcement and strength to concrete structures. Ensuring the quality of steel rebars is crucial to guarantee the safety and durability of the overall construction. To inspect the quality of steel rebars on construction sites, several methods are commonly employed. Visual Inspection: The first and most basic method of quality inspection involves visual examination of the rebars. This includes checking for any visible defects such as cracks, deformations, rust, or surface irregularities. Any rebars with such flaws are immediately identified and rejected. Measurement and Dimensional Checks: Steel rebars need to meet specific dimensional requirements as per project specifications and industry standards. Inspection personnel use measuring tools, such as calipers or tape measures, to verify the length, diameter, and other dimensions of the rebars. Any deviation from the specified tolerances may lead to rejection. Magnetic Particle Testing (MPT): MPT is a non-destructive testing method commonly used to detect surface and near-surface defects in steel rebars. This technique involves magnetizing the rebar and applying ferromagnetic particles, which accumulate at any surface defects or cracks. By carefully inspecting the surface, trained inspectors can identify any areas of concern. Ultrasonic Testing (UT): UT is another non-destructive testing method used for inspecting rebars. It involves the use of ultrasonic waves that are transmitted through the rebar. These waves reflect back differently when encountering any defects, such as voids, cracks, or inclusions. By analyzing the reflected waves, trained technicians can identify and assess the quality of the rebars. Tensile Testing: Tensile strength is a crucial factor in determining the quality of steel rebars. Tensile testing involves pulling a sample rebar until it breaks, measuring the force required to do so. This test helps determine the strength and ductility of the rebar, ensuring it meets the required standards. Chemical Analysis: Steel rebars are often subjected to chemical analysis to ensure they meet the specified composition requirements. Samples are collected from the rebars, and various tests are conducted to determine the chemical composition, including carbon, manganese, and other alloying elements. This analysis helps ensure the rebars possess the necessary properties for the intended application. All these inspection methods are typically conducted by qualified and experienced personnel, such as certified welding inspectors or quality control technicians. By employing these quality inspection procedures, construction sites can ensure that the steel rebars used in their projects meet the required standards, thereby ensuring the safety and longevity of the structures being built.
- Q:Are steel rebars suitable for use in road construction?
- Yes, steel rebars are suitable for use in road construction. They provide strength and durability to the concrete used in road structures, enhancing their load-bearing capacity and resistance to cracking or breaking under heavy traffic loads. Steel rebars also help in reinforcing the pavement to ensure its longevity and structural integrity.
- Q:How are steel rebars connected or spliced together?
- Steel rebars are typically connected or spliced together using various methods such as lap splicing, mechanical splicing, or welded splicing. Lap splicing involves overlapping two rebars and securing them with steel wire or tying them with steel tie wires. Mechanical splicing uses couplers or connectors that are threaded or bolted onto the ends of rebars to create a secure joint. Welded splicing involves welding the ends of two rebars together to form a strong connection. The method used depends on the specific construction requirements and engineering design.
- Q:Can steel rebars be used in the renovation of historic structures?
- The utilization of steel rebars is possible in the restoration of historical edifices. In construction endeavors, it is customary to employ steel rebars to fortify and enhance the stability of buildings, including those with historical significance. Throughout the renovation of historical structures, it is imperative to uphold the original essence and integrity of the edifice, whilst guaranteeing its stability and safety. By strategically incorporating steel rebars into the renovation process, it is feasible to reinforce fragile areas, strengthen load-bearing components, and extend the structure's lifespan without compromising its historical value. Nevertheless, it is vital to collaborate with competent architects, engineers, and preservationists who possess expertise in historical preservation. This ensures that the implementation of steel rebars is executed in a manner that respects the original design and materials of the historical structure.
- Q:What is the maximum length of steel rebars that can be manufactured?
- The maximum length of steel rebars that can be manufactured depends on various factors such as the manufacturing process, transportation limitations, and practical considerations. However, in general, steel rebars can be manufactured up to lengths of around 60 feet or 18 meters.
- Q:What is the impact strength of steel rebars?
- The impact strength of steel rebars is high, making them capable of withstanding heavy loads and absorbing energy without breaking or fracturing easily.
- Q:How do steel rebars affect the overall acoustic properties of a structure?
- The overall acoustic properties of a structure are greatly affected by steel rebars, also known as reinforcement bars. Steel rebars can have both positive and negative effects on the acoustic characteristics of a building or infrastructure. One way in which steel rebars impact the acoustic properties is through their ability to transmit sound vibrations. Steel, being a good conductor of sound, easily allows sound waves to travel. Consequently, when steel rebars are present in a structure, they act as pathways for sound transmission, allowing it to easily travel throughout the building. This can result in increased noise levels and reduced acoustic privacy, as sound waves can travel through the steel rebars and reach different areas of the structure. However, steel rebars can also contribute to the overall sound insulation of a structure. When properly installed and integrated with other construction materials like concrete or acoustic insulation materials, steel rebars help reduce the transmission of sound waves. The stiffness and mass of steel rebars help dampen the vibrations caused by sound waves, thereby reducing the amount of sound that passes through the structure. This enhances the acoustic comfort within the building, creating a quieter environment suitable for various activities that require reduced noise levels. It is important to note that the impact of steel rebars on the acoustic properties of a structure depends on various factors, including the thickness and density of the surrounding construction materials, the arrangement and spacing of the rebars, and the overall design of the building. Additionally, the use of additional acoustic treatments like sound-absorbing panels or insulation can further improve the acoustic performance of a structure by mitigating the negative effects of steel rebars. In conclusion, steel rebars play a significant role in the overall acoustic properties of a structure. While they can facilitate the transmission of sound waves, they can also contribute to sound insulation when combined with appropriate construction materials and techniques. Proper design and implementation, along with the use of additional acoustic treatments, are crucial in achieving the desired acoustic environment in buildings and infrastructure where steel rebars are present.
- Q:What is the average weight of steel rebars per meter?
- The weight of steel rebars per meter can differ based on the particular size and type of rebar utilized. Nevertheless, as a general rule, a commonly used rebar size like a #4 (with a diameter of 1/2 inch) generally weighs approximately 0.668 kilograms per meter. Conversely, a #8 rebar (with a diameter of 1 inch) can weigh roughly 2.67 kilograms per meter. To obtain the precise weight of steel rebars per meter for a specific size and type, it is crucial to consult the manufacturer or refer to a reliable source.
- Q:Can steel rebars be used in structures with limited maintenance access?
- Yes, steel rebars can be used in structures with limited maintenance access. Steel rebars are commonly used in construction projects because of their durability and strength. They are able to withstand heavy loads and provide reinforcement to concrete structures. In structures with limited maintenance access, steel rebars offer several advantages. Firstly, they have a long lifespan and are resistant to corrosion, which reduces the need for frequent maintenance. Unlike other materials, such as wood or aluminum, steel rebars do not decay or rot over time, making them suitable for structures that are difficult to access for regular maintenance. Additionally, steel rebars can be easily inspected using non-destructive testing methods such as ultrasound or magnetic particle inspection. These techniques can detect any potential defects or damage in the rebars without the need for invasive measures, thus ensuring the structural integrity of the building. Furthermore, steel rebars can be designed and installed in a way that minimizes the need for future maintenance. For example, the use of epoxy-coated rebars can provide an extra layer of protection against corrosion, extending the lifespan of the structure and reducing the need for maintenance. However, it is important to note that although steel rebars are highly durable, they are not completely maintenance-free. Over time, the protective coatings on the rebars may deteriorate, and if not addressed, corrosion can occur. Therefore, periodic inspections and maintenance activities should still be conducted, even in structures with limited access. In conclusion, steel rebars can be used in structures with limited maintenance access due to their durability, resistance to corrosion, and the ability to be inspected without invasive measures. However, regular inspections and maintenance are still necessary to ensure the long-term performance of the rebars and the overall structural integrity of the building.
- Q:How do steel rebars affect the flexural strength of reinforced concrete elements?
- The flexural strength of reinforced concrete elements is greatly influenced by steel rebars. Rebars improve the ability of concrete elements to withstand bending or flexural forces. To provide tensile strength, high-strength steel rebars are embedded within the concrete. Concrete is strong when compressed but weak when subjected to tension. By incorporating rebars, the resulting composite material benefits from the concrete's high compressive strength and the steel's excellent tensile strength. When a flexural load is applied to a reinforced concrete element, such as a beam or slab, the rebars distribute the load across the section. This effectively resists the concrete's tendency to crack and fail under tension. Acting as reinforcements, the rebars resist the tensile forces that occur due to bending, thus increasing the structure's flexural strength. The flexural strength of reinforced concrete elements is greatly influenced by the size, spacing, and arrangement of the rebars. Proper design and placement of rebars ensure optimal resistance to anticipated bending forces. Factors such as the element's span, expected loads, and desired strength level must be carefully considered. In addition, the bond between the rebars and the concrete is crucial for transferring bending stresses. Sufficient concrete cover over the rebars protects them from corrosion, ensuring their durability and the integrity of the structure. Corrosion weakens the bond between steel rebars and the surrounding concrete, compromising the flexural strength of the reinforced element. In conclusion, steel rebars greatly enhance the flexural strength of reinforced concrete elements by providing necessary tensile strength to resist bending forces. Proper design, placement, and bonding of rebars are vital to ensuring the durability and structural integrity of reinforced concrete structures.
1. Manufacturer Overview |
|
---|---|
Location | |
Year Established | |
Annual Output Value | |
Main Markets | |
Company Certifications |
2. Manufacturer Certificates |
|
---|---|
a) Certification Name | |
Range | |
Reference | |
Validity Period |
3. Manufacturer Capability |
|
---|---|
a)Trade Capacity | |
Nearest Port | |
Export Percentage | |
No.of Employees in Trade Department | |
Language Spoken: | |
b)Factory Information | |
Factory Size: | |
No. of Production Lines | |
Contract Manufacturing | |
Product Price Range |
Send your message to us
Hot Rolled Deformed Bar HRB400 or BS449 B500B
- Loading Port:
- Tianjin
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 25 m.t.
- Supply Capability:
- 200000 m.t./month
OKorder Service Pledge
OKorder Financial Service
Similar products
Hot products
Hot Searches
Related keywords