Hot Rolled Deformed Bar HRB400 or BS449 B500B
- Loading Port:
- Tianjin
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 25 m.t.
- Supply Capability:
- 200000 m.t./month
OKorder Service Pledge
OKorder Financial Service
You Might Also Like
Product Description:
OKorder is offering Product Description:
OKorder is offering Hot Rolled Deformed Bar HRB400 or BS449 B500B at great prices with worldwide shipping. Our supplier is a world-class manufacturer of steel, with our products utilized the world over. OKorder annually supplies products to European, North American and Asian markets. We provide quotations within 24 hours of receiving an inquiry and guarantee competitive prices.
Product Applications:
Deformed bar is widely used in buildings, bridges, roads and other engineering construction. Big to highways, railways, bridges, culverts, tunnels, public facilities such as flood control, dam, small to housing construction, beam, column, wall and the foundation of the plate, deformed bar is an integral structure material. With the development of world economy and the vigorous development of infrastructure construction, real estate, the demand for deformed bar will be larger and larger
Product Advantages:
OKorder's Hot Rolled Deformed Bar HRB400 or BS449 B500B are durable, strong, and resist corrosion, exact size, regular package, chemical and mechanical properties are stable.
Main Product Features:
· Premium quality
· Prompt delivery & seaworthy packing (30 days after receiving deposit)
· Corrosion resistance
· Can be recycled and reused
· Mill test certification
· Professional Service
· Competitive pricing
Product Specifications:
Manufacture: Hot rolled
Grade: BS4449
Certificates: ISO, SGS, BV, CIQ
Diameter: 6mm,8mm,10mm,12mm,14mm,16mm,18mm,20mm,
22mm,25mm,28mm,32mm,36mm,40mm,50mm
Length: 6M, 9M,12M or as required
Packaging: Export packing, nude packing, bundled
Chemical Composition: (Please kindly find our chemistry of our material based on HRB500 as below for your information)
Grade | Technical data of the original chemical composition (%) | ||||||
C | Mn | Si | S | P | V | ||
HRB400 | ≤0.25 | ≤1.60 | ≤0.80 | ≤0.045 | ≤0.045 | 0.04-0.12 | |
Physical capability | |||||||
Yield Strength (N/cm²) | Tensile Strength (N/cm²) | Elongation (%) | |||||
≥400 | ≥570 | ≥14 | |||||
Theoretical weight and section area of each diameter as below for your information:
Diameter(mm) | Section area (mm²) | Mass(kg/m) | Weight of 12m bar(kg) |
6 | 28.27 | 0.222 | 2.664 |
8 | 50.27 | 0.395 | 4.74 |
10 | 78.54 | 0.617 | 7.404 |
12 | 113.1 | 0.888 | 10.656 |
14 | 153.9 | 1.21 | 14.52 |
16 | 201.1 | 1.58 | 18.96 |
18 | 254.5 | 2.00 | 24 |
20 | 314.2 | 2.47 | 29.64 |
22 | 380.1 | 2.98 | 35.76 |
25 | 490.9 | 3.85 | 46.2 |
28 | 615.8 | 4.83 | 57.96 |
32 | 804.2 | 6.31 | 75.72 |
36 | 1018 | 7.99 | 98.88 |
40 | 1257 | 9.87 | 118.44 |
50 | 1964 | 15.42 | 185.04 |
FAQ:
Q1: How do we guarantee the quality of our products?
A1: We have established an advanced quality management system which conducts strict quality tests at every step, from raw materials to the final product. At the same time, we provide extensive follow-up service assurances as required.
Q2: What makes stainless steel stainless?
Within three days of placing an order, we will begin production. The specific shipping date is dependent upon international and government factors, but is typically 7 to 10 workdays.
Q3: What makes stainless steel stainless?
A3: Stainless steel must contain at least 10.5 % chromium. It is this element that reacts with the oxygen in the air to form a complex chrome-oxide surface layer that is invisible but strong enough to prevent further oxygen from "staining" (rusting) the surface. Higher levels of chromium and the addition of other alloying elements such as nickel and molybdenum enhance this surface layer and improve the corrosion resistance of the stainless material.
- Q: What is the purpose of ribbing on a steel rebar?
- The purpose of ribbing on a steel rebar is to improve the bond between the rebar and the surrounding concrete. Raised deformations, known as ribs, run along the length of the rebar, creating a larger surface area for the concrete to grip onto. This larger surface area enhances the mechanical interlock between the rebar and concrete, resulting in better load transfer and improved structural integrity. Additionally, the ribbing prevents slippage or movement of the rebar within the concrete, ensuring that the reinforcement remains in its intended position, even under heavy loads or seismic activity. In summary, the ribbing on a steel rebar is vital for enhancing the performance and durability of reinforced concrete structures.
- Q: How do steel rebars affect the fire resistance of concrete structures?
- Concrete structures can greatly increase their ability to withstand fire by incorporating steel rebars. These rebars serve as reinforcement, providing extra strength and stability to the structure and enabling the concrete to endure the intense heat of a fire. The fire resistance of concrete structures primarily relies on the fact that concrete has low thermal conductivity. When exposed to high temperatures, concrete undergoes spalling, where the outer layer breaks off due to the rapid expansion of trapped water. However, the presence of steel rebars helps prevent spalling by holding the concrete together and preventing it from disintegrating. Moreover, steel rebars have a higher melting point than concrete. This means that even when exposed to extreme heat, the rebars maintain their strength and integrity. Consequently, the overall structural stability of the concrete structure remains intact, even in the presence of fire. Steel rebars also act as a heat sink, absorbing and dissipating heat away from the surrounding concrete. This dissipation of heat prevents the formation and spread of localized hotspots throughout the structure, thereby reducing the risk of structural failure. To further enhance the fire resistance of concrete structures, specialized types of steel rebars, known as fire-resistant or fire-rated rebars, can be utilized. These rebars are specifically designed to withstand high temperatures for extended periods without losing their strength. They are often coated with materials such as epoxy or intumescent coatings, which offer additional protection against fire. In conclusion, steel rebars play a vital role in improving the fire resistance of concrete structures. Their presence enhances the overall structural stability, minimizes spalling, dissipates heat, and provides additional strength to withstand the intense heat generated during a fire.
- Q: Can steel rebars be used in residential swimming pool construction?
- Yes, steel rebars can be used in residential swimming pool construction. Steel rebars are commonly used to reinforce concrete structures, including swimming pools. The rebars provide added strength and durability to the concrete, making it capable of withstanding the pressure and weight of the water. The use of steel rebars helps prevent cracking and structural damage to the pool over time. Moreover, steel rebars are readily available, cost-effective, and can be easily installed by professional pool builders. Overall, the inclusion of steel rebars in residential swimming pool construction is highly recommended to ensure a long-lasting and reliable pool structure.
- Q: How are steel rebars used in water treatment plants?
- Steel rebars are commonly used in water treatment plants to reinforce the concrete structures that are essential for the plant's operations. These rebars provide strength and durability to the concrete, ensuring that the structures can withstand the harsh conditions and loads associated with water treatment processes.
- Q: What is the importance of proper anchoring of steel rebars in concrete?
- Proper anchoring of steel rebars in concrete is of utmost importance as it ensures structural integrity and enhances the overall strength and durability of the concrete structure. The anchoring process securely holds the rebars in place, preventing them from shifting or slipping under various loads and stresses. This, in turn, helps in maintaining the desired design strength, resisting cracking, and providing adequate reinforcement to withstand external forces such as earthquakes, wind, and other dynamic loads. In essence, proper anchoring of steel rebars is critical in ensuring the long-term stability and safety of concrete structures.
- Q: Can steel rebars be used in high-temperature environments?
- No, steel rebars are not typically recommended for use in high-temperature environments as they can lose their strength and structural integrity at elevated temperatures, potentially leading to failures or structural issues.
- Q: Can steel rebars be used in structures with high chemical resistance requirements?
- No, steel rebars cannot be used in structures with high chemical resistance requirements as they are susceptible to corrosion and deterioration when exposed to harsh chemicals.
- Q: How do steel rebars contribute to the overall stiffness of a structure?
- Steel rebars contribute to the overall stiffness of a structure by providing reinforcement to the concrete. The rebars are embedded within the concrete, allowing them to resist tension forces that would otherwise cause the concrete to crack or fail. This reinforcement helps to distribute and resist loads more effectively, increasing the overall stiffness and strength of the structure.
- Q: What is the average lifespan of steel rebars in concrete structures?
- The lifespan of steel rebars in concrete structures can vary based on multiple factors. Typically, if the concrete is of good quality and maintained properly, rebars can endure for numerous decades. However, the corrosion process can be expedited by exposure to environmental conditions, including moisture, chemicals, and temperature fluctuations, resulting in a shorter lifespan. In regions with high humidity or close proximity to saltwater, rebars may corrode at a faster rate. Furthermore, inadequate concrete cover or improper placement of rebars, as a result of poor construction practices, can also impact their longevity. Regular maintenance and inspections can aid in identifying potential issues and prolonging the lifespan of steel rebars in concrete structures.
- Q: What are the different types of coatings available for steel rebars to prevent corrosion?
- There are several types of coatings available for steel rebars to prevent corrosion. These include epoxy coatings, zinc coatings, galvanized coatings, and polyethylene coatings. Each coating has its own unique properties and level of protection against corrosion.
Send your message to us
Hot Rolled Deformed Bar HRB400 or BS449 B500B
- Loading Port:
- Tianjin
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 25 m.t.
- Supply Capability:
- 200000 m.t./month
OKorder Service Pledge
OKorder Financial Service
Similar products
Hot products
Hot Searches
Related keywords