• High-quality Carbon Seamless Steel Pipe For Boiler A210 CNBM System 1
  • High-quality Carbon Seamless Steel Pipe For Boiler A210 CNBM System 2
  • High-quality Carbon Seamless Steel Pipe For Boiler A210 CNBM System 3
High-quality Carbon Seamless Steel Pipe For Boiler A210 CNBM

High-quality Carbon Seamless Steel Pipe For Boiler A210 CNBM

Ref Price:
get latest price
Loading Port:
Qingdao
Payment Terms:
TT OR LC
Min Order Qty:
10 pc
Supply Capability:
30 pc/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Quick Details

Thickness:

3 - 60 mm

Section Shape:

Round

Outer Diameter:

21.3 - 1220 mm



Secondary Or Not:

Non-secondary

Application:

fluid pipe,boiler pipe, structural pipe, oil/gas/water pipe etc

Technique:

Hot Rolled

Certification:

ISO9001-2000, ISO14000, ISO18000 , API 5L

Surface Treatment:

Painted, Oiled, galvanized or phosphate etc

Special Pipe:

API Pipe

Alloy Or Not:

Is Alloy

Technique::

Hot rolled or cold rolled

Special pipe::

API/ ASME/thickwall/oil/gas/water pipe

Length::

3-12m

Treatment of two ends::

Beveled end , plain end etc

Brand::

Bai Chuan

Third Party Inspection::

BV, SGS etc.

Schedule::

SCH10-SCH160, XS, XXS

Other Material::

10#, 20#, 16Mn, Q345 etc

Material Type::

Carbon steel/ Low alloy steel

Producing standard::

American/Japanese/ German/ Britain/ Chinese standard

Grade:

A53(A,B),A106(B,C),A210,API J55,St37,STPG42,A53-A369,API J55-API P110,ST35-ST52

Standard:

BS EN10296,JIS G3452-2004





1. Out Diameter:

21.3mm-1220mm 

2. Wall Thickness:

3mm-60mm

3. Length:

3m-12m

4. Producing Standard:

  • American ASME B36.10M, ASTM, API 5L, API 5CT

  • Japanese JIS

  • German DIN

  • Chinese GB

  • BS standard

5. Main Material:

(Carbon Steel & Low Alloy steel)

  • ASTM A53, A106, A210, A252, A333 etc;

  • X42, X46, X52, X60, X65, X70 etc;

  • JIS STPG42, G3454, G3456 etc;

  • German St37, St42, St45, St52, DIN1626, DIN17175

  • Chinese 20#, Q345, 16Mn etc.

6. Special specifications:

Available according to customer’s requirements and quantity.

7. End Shape:

Beveled end , plain end, varnished, or adding plastic caps to protect the two ends as per customer’s requirements.

8. Surface treatment:

Painted, Oiled, galvanized, phosphate etc.

9. Usage:

  • Widely used in the mechanical treatment field, petrochemical industry, transport and construction field

  • Ordinary structural purposes and mechanic structural purposes, for example in construction field, fulcrum bearing etc;

  • The transportation of fluids in the projects and big equipments, for example transport of water, oil, gas etc

  • Can be used in low and medium pressure boiler for the transportation of fluids, for example steam tube, big smoke tube, small smoke tube, generating tube etc

10. Certificates:

ISO9001-2000, ISO14000, ISO18000, API 5L certificate

11. Third party inspection:

Welcome you to send a third party inspecting company (BV, SGS etc) to check the quality of our final products.

12. Pictures:

our producing flow chart, our factory, production line, inspecting equipments, our products are listed below for your reference.


Q: Can steel pipes be used for brewery installations?
Yes, steel pipes can be used for brewery installations. Steel pipes are commonly used in breweries for various applications such as transferring liquids, connecting equipment, and supporting structures. They are durable, resistant to corrosion, and can withstand high temperatures and pressures, making them suitable for brewery installations.
Q: How are steel pipes protected against external impact or mechanical damage?
Various methods are employed to protect steel pipes from external impact or mechanical damage. One commonly utilized technique involves applying a protective coating onto the pipe's surface. This coating acts as a barrier, preventing direct contact between the pipe and external objects or forces. Coatings such as epoxy, polyethylene, or polyurethane are frequently chosen due to their excellent resistance to impact and abrasion. Another method of protection involves the use of pipe supports or clamps. These supports are positioned at regular intervals along the pipe's length, ensuring stability and minimizing excessive movement or vibration. They help distribute the load and absorb any external impacts, thus reducing the risk of mechanical damage. Additionally, steel pipes can be reinforced by wrapping them with materials like fiberglass, carbon fiber, or kevlar. These reinforcement materials provide an extra layer of strength and durability, enhancing the pipes' resistance to external impact and mechanical damage. Furthermore, burying the pipes underground or installing them within protective casings can offer an additional layer of protection. This measure shields the pipes from direct contact with external objects, reducing the potential for damage caused by accidental impacts or environmental factors. In conclusion, a combination of protective coatings, supports, reinforcements, and appropriate installation methods ensures that steel pipes are safeguarded against external impact or mechanical damage. This effectively extends their lifespan and maintains their structural integrity.
Q: How are steel pipes measured and labeled?
Steel pipes are typically measured and labeled based on their nominal pipe size (NPS), which refers to the inner diameter of the pipe. This measurement is expressed in inches or millimeters. Additionally, steel pipes are often labeled with their schedule or wall thickness, which is represented by a numerical value. The labeling also includes the pipe material, such as carbon steel or stainless steel, and may include other specifications and markings as required by industry standards and regulations.
Q: How are steel pipes used in the defense sector?
Steel pipes are used in the defense sector for various purposes such as constructing military infrastructure, manufacturing weapons, and creating protective barriers. They are often utilized in the construction of military bases, ammunition storage facilities, and communication systems. Steel pipes are also crucial for manufacturing armored vehicles, artillery, and missile systems. Additionally, they are employed in creating barriers and fortifications to enhance security and defense capabilities.
Q: Can steel pipes be used for wastewater treatment systems?
Yes, steel pipes can be used for wastewater treatment systems. Steel pipes are commonly used in wastewater treatment systems due to their durability, corrosion resistance, and ability to handle high pressure and flow rates. Moreover, steel pipes can be easily welded, making them suitable for various configurations and applications within the wastewater treatment process.
Q: Heating system DN40 and DN32 welded steel pipe how to connect?
Welding: AC arc welding machine welding. Mode 1: apply to the medium of non demanding piping, DN40 steel pipe necking and DN32 steel pipe butt welding, or directly DN32 steel pipe into the DN40 internal welding. 2: the pipeline requirements apply to the inner wall of smooth transition, reducing short circuit welding for DN40x32 suppression of this mechanism are used for connection pipe seamless steel pipe high pressure pipeline connection, no special requirements, not commonly used welded steel pipe. Connection of mechanism fittings is not only costly, but not necessary unless special requirements are required!
Q: What is the difference between hot-finished and cold-finished steel pipes?
Hot-finished and cold-finished steel pipes are distinguished by their manufacturing processes, resulting in different characteristics and uses. Hot-finished steel pipes are manufactured by heating a solid steel billet to a high temperature and then piercing it to create a hollow tube. This process is known as hot rolling. The hot rolling process ensures that the steel is malleable and can be easily shaped into the desired form. Hot-finished steel pipes have a rough surface and more rounded edges. They are typically larger in diameter and have thicker walls. These pipes are commonly used in applications that require high strength and resistance to pressure, such as in the oil and gas industry, structural projects, and heavy machinery. In contrast, cold-finished steel pipes are made through a process called cold drawing. This involves pulling the hot-finished steel pipe through a die at room temperature to reduce its diameter and achieve the desired shape. The cold drawing process provides a more precise and smoother finish to the steel pipes. Cold-finished steel pipes have a smoother surface and sharper edges compared to hot-finished pipes. They are generally smaller in diameter and have thinner walls. Cold-finished steel pipes are commonly used in applications that require precise dimensions, such as automotive parts, construction components, and machinery manufacturing. Overall, the main difference between hot-finished and cold-finished steel pipes lies in their manufacturing processes, resulting in variations in surface finish, dimensions, and applications. Hot-finished pipes are suitable for high-strength and pressure-resistant applications, while cold-finished pipes are ideal for precise dimensions and smooth surface requirements.
Q: How are steel pipes classified based on their thickness?
Steel pipes can be classified based on their thickness into three main categories: Schedule, Nominal Pipe Size (NPS), and Wall Thickness. The Schedule classification is commonly used in North America and refers to the wall thickness of the pipe. It is denoted by numbers such as Schedule 10, Schedule 40, and Schedule 80, where the higher the number, the thicker the pipe. The Nominal Pipe Size (NPS) classification, on the other hand, is used internationally and refers to the inside diameter of the pipe. It is expressed in inches and is usually followed by a schedule number to indicate the wall thickness. For instance, NPS 6 Schedule 40 means a pipe with a 6-inch inside diameter and a wall thickness according to Schedule 40. Lastly, steel pipes can also be classified based on their wall thickness in millimeters or inches. This classification provides a more precise measurement of the pipe's thickness, usually referred to as the "wall thickness" or "wt" in specifications. The wall thickness is measured from the outside diameter to the inside diameter and can be expressed in various units of measurement, such as millimeters, inches, or gauge. In conclusion, steel pipes are classified based on their thickness using different systems such as Schedule, Nominal Pipe Size (NPS), and Wall Thickness. These classifications help ensure that the appropriate pipe is selected for specific applications, considering factors such as pressure requirements, structural integrity, and compatibility with other components of the system.
Q: How are steel pipes used in the manufacturing of desalination plants?
Steel pipes are used in the manufacturing of desalination plants for various purposes, such as transporting seawater, brine, and freshwater through different stages of the desalination process. They are also used for the construction of pipelines, intake systems, and discharge outlets, ensuring durability, corrosion resistance, and efficient water flow in these critical systems.
Q: How do steel pipes perform in high-temperature applications?
Steel pipes perform well in high-temperature applications due to their excellent heat resistance and structural integrity. The high melting point of steel allows it to withstand extreme temperatures without deformation or failure. Additionally, steel pipes have good thermal conductivity, which ensures efficient heat transfer in industrial processes.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords