• GB1449 deformed steel bar for construction System 1
  • GB1449 deformed steel bar for construction System 2
  • GB1449 deformed steel bar for construction System 3
GB1449 deformed steel bar for construction

GB1449 deformed steel bar for construction

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
25 m.t.
Supply Capability:
10000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Product Description:

Specifications of Deformed Steel Bar:

Standard

GB

HRB335, HRB400, HRB500

UK

G460B, B500A, B500B,B500C

USA

GR40, GR60

Diameter

6mm,8mm,10mm,12mm,14mm,16mm,18mm,20mm,

22mm,25mm,28mm,32mm,36mm,40mm,50mm

Length

6M, 9M,12M or as required

Place of origin

Hebei, China mainland

Application

building,construction,road,bridge etc

Brand name

DRAGON

Theoretical weight and section area of each diameter as below for your information:

Diameter(mm)

Section area (mm²)

Mass(kg/m)

6

28.27

0.222

8

50.27

0.395

10

78.54

0.617

12

113.1

0.888

14

153.9

1.21

16

201.1

1.58

18

254.5

2.00

20

314.2

2.47

22

380.1

2.98

25

490.9

3.85

28

615.8

4.83

32

804.2

6.31

36

1018

7.99

40

1257

9.87

50

1964

15.42

Usage and Applications of Deformed Steel Bar:

Deformed bar is widely used in buildings, bridges, roads and other engineering construction. Big to highways, railways, bridges, culverts, tunnels, public facilities such as flood control, dam, small to housing construction, beam, column, wall and the foundation of the plate, deformed bar is an integral structure material. With the development of world economy  and the vigorous development of infrastructure construction, real estate, the demand for deformed bar will be larger and larger..

Packaging & Delivery of Deformed Steel Bar:

Packaging Detail: products are packed in bundle and then shipped by container or bulk vessel, deformed bar is usually naked strapping delivery, when storing, please pay attention to moisture proof. The performance of rust will produce adverse effect.

Each bundle weight: 2-3MT, or as required

Payment term: TT or L/C

Delivery Detail: within 45 days after received advanced payment or LC.

Label: to be specified by customer, generally, each bundle has 1-2 labels

Trade terms: FOB, CFR, CIF

Deformed Steel Bar in Coil

GB1449 deformed steel bar for construction

GB1449 deformed steel bar for construction

Produce Line of Deformed Steel Bar

Note:

1. Our products are produced according to national standard (GB), if not, supply according to national standards (GB) or agreement as customer required.

2. Other Grade and Standard Deformed Steel Bar we can supply:

   Grade: GR40/GR60, G460B/B500A/B500B/B500C,BST500S

   Standard: ASTM, BS, DIN

   The Minimum Order Quantity of these products is high, and need to be confirmed.

3. We can not only supply Deformed Steel Bar; if you need anything about building materials, please contact us for further information.

4. Please send us your detail specifications when inquire. We will reply to you as soon as possible. We sincerely hope we can establish a long stable business relationship.

Q: What is the impact of steel rebars on the overall carbon footprint of a construction project?
Steel rebars have a significant impact on the overall carbon footprint of a construction project. The production of steel involves high carbon emissions due to the extraction and processing of iron ore, as well as the energy-intensive manufacturing process. Additionally, the transportation and installation of steel rebars contribute to the carbon footprint. However, the durability and strength of steel rebars offer long-term benefits by reducing the need for frequent repairs or replacements, ultimately mitigating the carbon emissions associated with maintenance. Therefore, while steel rebars contribute to the carbon footprint initially, their longevity and structural advantages can help offset these emissions over the lifespan of the construction project.
Q: How do steel rebars affect the durability of concrete in freeze-thaw cycles?
The durability of concrete in freeze-thaw cycles can be greatly enhanced by steel rebars. When exposed to freezing and thawing conditions, concrete undergoes expansion and contraction. During freezing, the water inside the concrete pores freezes and expands, exerting pressure on the surrounding concrete matrix. This can lead to cracks and deterioration of the concrete. However, the inclusion of steel rebars in the concrete can help alleviate these problems. Steel has a lower coefficient of thermal expansion compared to concrete, meaning it expands and contracts less with temperature changes. This property allows the steel rebars to absorb the stresses generated during freeze-thaw cycles, preventing significant damage to the concrete structure. Furthermore, steel rebars also reinforce the concrete, increasing its overall strength and toughness. This reinforcement helps distribute the stresses caused by freeze-thaw cycles more evenly throughout the concrete, reducing the likelihood of crack formation or propagation. Moreover, steel rebars act as a barrier against water penetration into the concrete. Moisture is a major contributor to freeze-thaw damage. The steel rebars assist in creating a more impermeable concrete structure by reducing the size and number of cracks, preventing water from entering and causing further deterioration. To sum up, steel rebars play a vital role in enhancing the durability of concrete in freeze-thaw cycles. Their ability to absorb stresses, reinforce the concrete, and prevent water penetration significantly reduces the potential for damage and extends the lifespan of the concrete structure.
Q: How can corrosion of steel rebars be prevented?
Corrosion of steel rebars can be prevented through various methods such as using corrosion-resistant materials, applying protective coatings, ensuring proper concrete cover, implementing cathodic protection systems, and maintaining a good drainage system to avoid water accumulation. Regular inspection and maintenance also play a crucial role in preventing corrosion.
Q: What is the effect of carbon content on the strength of steel rebars?
The strength of steel rebars is significantly affected by their carbon content. Generally, a higher carbon content results in increased strength and hardness in the steel rebars. This occurs because carbon atoms create strong chemical bonds with iron atoms in the steel matrix, resulting in a more rigid and durable material. When carbon is added to the steel, it forms carbides, which are crystalline compounds that enhance the hardness and strength of the steel. The presence of these carbides improves the steel rebars' resistance to deformation, making them suitable for applications that require high strength, such as construction and infrastructure projects. Nevertheless, it is important to consider that there is a limit to how much carbon can be added to the steel rebars to enhance their strength. Excessive carbon content can make the steel brittle and prone to cracking when subjected to stress. This is because excessive carbon atoms can form large clusters of carbides, weakening the overall structure of the steel rebars. Therefore, it is crucial to carefully balance the carbon content in steel rebars to achieve the desired strength and toughness. Depending on the specific application and requirements, different levels of carbon can be utilized to optimize the strength and performance of the steel rebars. In conclusion, the carbon content directly affects the strength of steel rebars. Increasing the carbon content can enhance their strength and hardness, but excessive levels of carbon can result in brittleness. Hence, finding the appropriate balance of carbon content is essential to ensure the optimal strength and performance of steel rebars in various construction applications.
Q: Can steel rebars be used in tunnel construction projects?
Yes, steel rebars can be used in tunnel construction projects. Steel rebars are commonly used as reinforcement in concrete structures, including tunnels. They provide the necessary strength and durability to withstand the loads and stresses that tunnels are subjected to. The rebars are typically placed within the concrete lining of the tunnel to enhance its structural integrity and prevent cracking or collapse. In addition, steel rebars can be easily shaped and bent to match the specific design requirements of the tunnel, making them a versatile and practical choice for tunnel construction projects.
Q: How do steel rebars affect the constructability of projects in remote locations?
Steel rebars can have a significant impact on the constructability of projects in remote locations. Due to their weight and bulkiness, transporting rebars to remote sites can be challenging and expensive. Additionally, the availability of rebars in remote areas may be limited, leading to delays in construction timelines. However, the presence of steel rebars is crucial for reinforcing concrete structures, ensuring their strength and durability. Therefore, careful planning and coordination are necessary to overcome logistical obstacles and ensure the successful implementation of projects in remote locations.
Q: What is the typical yield-to-ultimate strength ratio of steel rebars?
The typical yield-to-ultimate strength ratio of steel rebars is approximately 0.85 to 0.95.
Q: What is thread steel for?
1. nominal diameter range and recommended diameterThe nominal diameter of the thread steel is from 6 to 25mm, and the nominal diameter of the standard steel is 6, 8, 10, 12, 14, 16, 20, 25,, 32, 40 and 50mm.Allowable deviation of surface shape and dimension of 2. ribbed steel discThe ribbed steel bars with ribbed threads shall meet the following basic requirements:The angle between the transverse ribs and the axis of the steel disc should not be less than 45 degrees. When the angle is not greater than 70 degrees, the direction of the cross section of the thread steel is opposite to that of the upper rib on both sides;The transverse rib and the spacing l shall not be greater than 0.7 times the nominal diameter of the steel;The angle between the sides of the transverse rib and the surface of the threaded steel shall not be less than 45 degrees;The sum of the gap (including the width of longitudinal ribs) between the ends of the cross bar and the end of the cross bar of the threaded steel shall not be greater than 20% of the nominal circumference of the thread steel;When the rebar nominal diameter less than 12mm, the relative rib area should not be less than 0.055; the nominal diameter of 14mm and 16mm, the relative rib area should not be less than 0.060; the nominal diameter is more than 16mm, the relative rib area should not be less than 0.065.
Q: How do steel rebars resist seismic forces?
Steel rebars resist seismic forces in several ways. Firstly, their high tensile strength allows them to withstand the intense forces generated during an earthquake. Additionally, rebars are embedded within concrete structures, providing reinforcement and increasing the overall strength and stability of the building. The ductility of steel rebars also plays a crucial role as they have the ability to deform and absorb energy during seismic events, which helps prevent sudden collapse. Overall, the combination of strength, reinforcement, and ductility makes steel rebars an effective solution for resisting seismic forces and ensuring the safety of structures during earthquakes.
Q: What is the process of pre-stressing steel rebars?
The process of pre-stressing steel rebars involves applying a predetermined amount of stress or force to the rebars before they are subjected to loading. This technique is commonly used in the construction industry to improve the structural strength and durability of concrete structures. The process typically starts with the selection of high-strength steel rebars that have good tensile strength properties. These rebars are usually made from carbon steel or alloy steel and come in various sizes and shapes, depending on the specific application. Once the rebars are selected, they are cleaned and coated with a protective layer to prevent corrosion. After that, the rebars are placed into the desired position within the concrete structure, such as beams, columns, or slabs, according to the design specifications. Next, the pre-stressing process begins. There are two primary methods for pre-stressing steel rebars: pre-tensioning and post-tensioning. In pre-tensioning, the rebars are initially tensioned by fixing them to an anchorage point or a strong frame. The opposite end of the rebars is then pulled using hydraulic jacks or mechanical devices, applying a significant amount of force. Once the desired stress is achieved, the rebars are secured in their stressed position by casting concrete around them. After the concrete has hardened, the jacks or devices are released, transferring the stress to the rebars. In post-tensioning, the rebars are first placed into the concrete structure without any initial tension. After the concrete has hardened, a series of ducts or channels are created within the structure, running along the path of the rebars. High-strength steel strands or cables are then inserted through these ducts. The strands are anchored at one end of the structure and tensioned using hydraulic jacks or similar devices. This tensioning process applies a force to the rebars, which is transferred to the concrete, compressing it. Once the desired stress is achieved, the strands are secured and the ducts are filled with grout or mortar to protect them from corrosion. Both pre-tensioning and post-tensioning techniques result in pre-stressed steel rebars that provide several benefits to concrete structures. These include increased load-carrying capacity, improved resistance to cracking and deformation, enhanced durability, and overall better structural performance. The process of pre-stressing steel rebars is a vital aspect of modern construction practices, ensuring the longevity and safety of various types of concrete structures.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords