GB STANDARD HIGH QUALITY HOT ROLLED REBAR
- Loading Port:
- Tianjin
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 50 m.t.
- Supply Capability:
- 100000 m.t./month
OKorder Service Pledge
OKorder Financial Service
You Might Also Like
Product Description:
Appearance: Black
Technique: Slitting hot rolled steel coil
Grade: Q235, Q195,A36 SS400 S235jr.St37-2
Standard: AISI,GB,DIN,ASTM,EN,JIS
Length: 6m, 9m, 12m or as your requirement.
Width: 10mm-1010mm
Thickness: 1.5mm-20mm
Business type: big manufacture
Place of origin: Tianjin China (Mainland)
Packaging Details: In bundles for exporting and sea worthy
Delivery Detail: Within 15-35 days after receiving L/C or deposite T/T
General specification as below:
Flat Bar Specification | |||
Width (mm) | Thickness (mm) | Length (m) | Theoretical Weight (kg/m) |
20 | 2.0 | 6/9/12 | 0.31 |
20 | 2.5 | 6/9/12 | 0.39 |
20 | 2.75 | 6/9/12 | 0.43 |
25 | 2.5 | 6/9/12 | 0.49 |
25 | 3.75 | 6/9/12 | 0.74 |
30 | 2.5 | 6/9/12 | 0.59 |
30 | 3.5 | 6/9/12 | 0.82 |
30 | 9.75 | 6/9/12 | 2.30 |
40 | 3.5 | 6/9/12 | 1.10 |
40 | 4.75 | 6/9/12 | 1.50 |
40 | 11.75 | 6/9/12 | 3.69 |
50 | 2.75 | 6/9/12 | 1.08 |
50 | 4.5 | 6/9/12 | 1.77 |
50 | 9.75 | 6/9/12 | 3.83 |
60 | 5.5 | 6/9/12 | 2.60 |
60 | 7.5 | 6/9/12 | 3.53 |
60 | 11.5 | 6/9/12 | 5.42 |
80 | 5.5 | 6/9/12 | 3.45 |
80 | 7.5 | 6/9/12 | 4.71 |
80 | 11.75 | 6/9/12 | 7.38 |
100 | 3.25 | 6/9/12 | 2.55 |
100 | 4.75 | 6/9/12 | 3.73 |
100 | 7.5 | 6/9/12 | 5.89 |
120 | 9.75 | 6/9/12 | 9.18 |
120 | 11.75 | 6/9/12 | 11.07 |
150 | 9.75 | 6/9/12 | 11.48 |
150 | 11.5 | 6/9/12 | 13.54 |
150 | 13.5 | 6/9/12 | 15.90 |
160 | 11.75 | 6/9/12 | 14.76 |
200 | 9.5 | 6/9/12 | 14.92 |
250 | 5.75 | 6/9/12 | 11.28 |
340 | 7.75 | 6/9/12 | 20.68 |
Products Advantages
1. high quality competitive price and Accurate in size
2. high dimensional accuracy
3. Guaranteed raw material
4.high utilization rate of material
5.convenient in construction, saving much time and labor
6. high mechanical strength
Application: Widely used for construction, Ship building, Machinery manufacturing ,steel structure,agriculture and steel grating.
- Q: How do steel rebars impact the overall flexibility of a structure?
- Steel rebars, also referred to as reinforcing bars, play a crucial role in enhancing the overall flexibility of a structure. These bars are typically utilized in reinforced concrete structures to bolster tensile strength and enhance the structural integrity of the building. The integration of steel rebars in concrete significantly augments the flexibility of a structure. Concrete itself possesses strength in compression but weakness in tension. By incorporating rebars, the structure becomes more adept at withstanding tensile forces and resisting bending or deformation caused by external loads or environmental factors. The rebars function as reinforcement by assimilating and dispersing tensile forces throughout the structure, aiding in the prevention of cracks and ensuring a more uniform distribution of stress. This is particularly vital in regions prone to seismic activity or high wind loads, where structures must possess the ability to flex and absorb the energy exerted upon them. Furthermore, the presence of steel rebars also permits the creation of thinner and lighter concrete sections. This contributes to the overall flexibility of the structure by reducing the dead load, rendering it more responsive and adaptable to diverse conditions. In summary, steel rebars have a significant impact on the overall flexibility of a structure by furnishing tensile strength, averting cracks, distributing stress, and enabling the implementation of lighter and thinner concrete sections. By enhancing the structural integrity and resilience, the inclusion of rebars ensures that the building can withstand external forces while preserving its stability and flexibility, ultimately contributing to its longevity and safety.
- Q: High strength thread steel hrb400e 32 in diameter, is it special steel?
- Hrb400e diameter 32 of the rebar is not special steel, it is seismic steel.
- Q: How do steel rebars affect the overall fire resistance of concrete structures?
- Steel rebars have a significant impact on the overall fire resistance of concrete structures. Steel rebars, also known as reinforcement bars, are used in concrete structures to provide strength and stability. When exposed to fire, the behavior of steel rebars can either enhance or compromise the fire resistance of the concrete structure. The addition of steel rebars in concrete has a favorable effect on the fire resistance of the structure. The high thermal conductivity of steel helps to dissipate the heat generated during a fire, preventing localized overheating and reducing the risk of structural failure. This dispersal of heat through the steel rebars slows down the rate of temperature rise in the concrete, providing additional time for evacuation and firefighting efforts. Moreover, the presence of steel rebars also helps to maintain the structural integrity of the concrete during a fire. Concrete has low tensile strength, and when exposed to high temperatures, it tends to crack and spall. However, the presence of steel rebars helps to mitigate this problem. The rebars act as reinforcement, holding the concrete together and preventing it from falling apart under the influence of heat. However, it is important to note that steel rebars can also have a negative impact on fire resistance if not properly designed or protected. If the size and spacing of the rebars are inadequate, it can result in a rapid transfer of heat through the concrete, leading to premature failure. Additionally, if the rebars are not adequately protected with fire-resistant materials, they can lose their strength and integrity, further compromising the overall fire resistance of the structure. To ensure optimal fire resistance, designers and engineers take into account various factors such as the size, spacing, and coating of the steel rebars, as well as the concrete cover thickness. Additionally, fireproofing measures such as the use of intumescent coatings, fire-resistant insulation, and fireproof claddings can be employed to enhance the fire resistance of steel rebars and the overall concrete structure. In conclusion, steel rebars play a crucial role in the fire resistance of concrete structures. When appropriately designed and protected, they can enhance the fire resistance by dissipating heat and maintaining structural integrity. However, inadequate design or lack of protection can compromise the fire resistance. Therefore, it is essential to follow proper design guidelines and implement appropriate fireproofing measures to ensure the overall fire safety of concrete structures.
- Q: What are the advantages of using epoxy-coated steel rebars?
- There are several advantages to using epoxy-coated steel rebars in construction projects. Firstly, epoxy coating provides excellent corrosion resistance. Steel rebars are prone to corrosion when exposed to moisture, oxygen, and other environmental elements. The epoxy coating acts as a protective barrier, preventing these elements from reaching the surface of the steel and thus reducing the risk of corrosion. This significantly extends the lifespan of the rebars and enhances the overall durability of the structure. Secondly, epoxy-coated steel rebars offer improved bonding strength. The epoxy coating provides a rough surface that enhances the adhesive properties between the rebar and the concrete. This results in better load transfer, ultimately strengthening the structure. The increased bonding strength also helps in reducing cracking and enhancing the overall structural integrity. Another advantage of epoxy-coated steel rebars is their ability to resist chemical attack. In certain environments where structures are exposed to chemicals or aggressive substances, such as wastewater treatment plants or industrial facilities, the epoxy coating acts as a barrier that prevents these chemicals from directly contacting the steel. This helps in preserving the rebars and maintaining the structural integrity over the long term. Additionally, epoxy-coated steel rebars provide easier handling and installation. The smoothness of the epoxy coating reduces friction between the rebar and other construction materials, making it easier to position and place the rebars accurately. This simplifies the construction process, enhances productivity, and reduces labor costs. Lastly, epoxy-coated steel rebars offer aesthetic benefits. The epoxy coating can be customized to various colors, allowing for better visual integration with architectural designs. This is particularly useful in projects where the rebars are exposed and visible, such as bridges or artistic structures. In conclusion, the advantages of using epoxy-coated steel rebars include corrosion resistance, improved bonding strength, chemical resistance, easier handling and installation, and aesthetic benefits. By using epoxy-coated steel rebars, construction projects can benefit from enhanced durability, reduced maintenance costs, and improved structural performance.
- Q: Can steel rebars be used in structures with high alkaline environments?
- Yes, steel rebars can be used in structures with high alkaline environments. Steel rebars are commonly used in concrete structures and are designed to withstand various environmental conditions, including high alkaline environments. However, it is essential to ensure that the appropriate type of steel rebar is selected to prevent corrosion and maintain structural integrity in such conditions.
- Q: What are the guidelines for proper spacing and lapping of steel rebars in concrete structures?
- The guidelines for proper spacing and lapping of steel rebars in concrete structures vary depending on the specific design and structural requirements. However, some general recommendations exist. The rebars should be adequately spaced to ensure proper concrete cover, allowing for corrosion protection and sufficient bond strength. Typically, the minimum spacing between parallel rebars is around 1.5 times the diameter of the larger bar or 25 mm (1 inch), whichever is greater. Lapping, or overlapping, of rebars is necessary to create a continuous load path. The length of the overlap depends on the design and the type of rebar connection being used. It is important to follow the specifications provided by structural engineers and adhere to local building codes to ensure the proper spacing and lapping of rebars in concrete structures.
- Q: How are steel rebars protected from concrete spalling?
- Steel rebars are protected from concrete spalling through the use of various methods and techniques. One common method is to provide a concrete cover over the rebars. This means that the rebars are embedded within the concrete structure, ensuring that they are not directly exposed to external elements or conditions that could cause spalling. The thickness of the concrete cover is typically specified in construction codes and standards to ensure adequate protection. Another way to protect steel rebars from concrete spalling is by using corrosion inhibitors. These inhibitors are typically added to the concrete mix during the construction process. They work by reducing the corrosion rate of the steel rebars, thereby protecting them from spalling caused by rusting and corrosion. In addition to concrete cover and corrosion inhibitors, proper concrete mix design is crucial in protecting steel rebars. The use of high-quality concrete with appropriate water-cement ratio, sufficient strength, and proper curing greatly enhances the resistance of the concrete against spalling. This ensures that the rebars remain securely embedded within the concrete structure and are not exposed to moisture or other deteriorating agents that could lead to spalling. Furthermore, proper construction practices such as adequate compaction of concrete, proper placement and alignment of rebars, and effective waterproofing measures also contribute to the protection of steel rebars from concrete spalling. These practices help to minimize the chances of moisture ingress and the formation of cracks or voids that could expose the rebars to the risk of spalling. Overall, a combination of concrete cover, corrosion inhibitors, proper concrete mix design, and appropriate construction practices are essential in protecting steel rebars from concrete spalling. By implementing these measures, the durability and longevity of concrete structures can be significantly improved.
- Q: How do steel rebars impact the overall construction cost estimation process?
- Steel rebars can have a significant impact on the overall construction cost estimation process. They are a crucial component in reinforced concrete structures, providing strength and durability. The quantity and quality of steel rebars required for a project can influence the material cost, labor cost, and construction timeline. Accurate estimation of steel rebars is essential to ensure the project's structural integrity while avoiding cost overruns or delays.
- Q: Can steel rebars be used in industrial structures?
- Yes, steel rebars can be used in industrial structures. Steel rebars provide strength, durability, and stability, making them suitable for reinforcing concrete and enhancing the structural integrity of industrial buildings and facilities.
Send your message to us
GB STANDARD HIGH QUALITY HOT ROLLED REBAR
- Loading Port:
- Tianjin
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 50 m.t.
- Supply Capability:
- 100000 m.t./month
OKorder Service Pledge
OKorder Financial Service
Similar products
Hot products
Hot Searches
Related keywords