• FC93  Carbon Additive CNBM China Biggest Supplier System 1
  • FC93  Carbon Additive CNBM China Biggest Supplier System 2
  • FC93  Carbon Additive CNBM China Biggest Supplier System 3
FC93  Carbon Additive CNBM China Biggest Supplier

FC93 Carbon Additive CNBM China Biggest Supplier

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
0 m.t.
Supply Capability:
100000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Packaging & Delivery

Packaging Detail:

25kgs/50kgs/1ton per bag or as buyer's request

Delivery Detail:

Within 20 days after receiving corect L/C

Specifications

Calcined Anthracite 
Fixed carbon: 90%-95% 
S: 0.5% max 
Size: 0-3. 3-5.3-15 or as request

Feature

All of our goods are made in the best quality of world famous Tianjin. All of our products are with High carbon, Low ash, low sulphur, Low Moisture.

Application

The Calcined Anthracite Coal/Gas Calcined Anthracite Coal/Carbon Raiser is mainly used in steelmaking in electrical stove, screening water, shipbuilding sandblast to remove rust. It can reduce the cost of steelmaking effectively by replacing the traditional petroleum coke of carburant.Also can improve the Carbon content in steel-melting and Ductile iron foundry.

 

Specifications

Calcined Anthracite 
Fixed carbon: 90%-95% 
S: 0.5% max 
Size: 0-3. 3-5.3-15 or as request

PARAMETER     UNIT GUARANTEE VALUE

F.C.%

95MIN

94MIN

93MIN

92MIN

90MIN

ASH %

4MAX

5MAX

6MAX

7MAX

8MAX

V.M.%

1 MAX

1MAX

1.5MAX

1.5MAX

1.5MAX

SULFUR %

0.5MAX

0.5MAX

0.5MAX

0.5MAX

0.5MAX

MOISTURE   %

0.5MAX

0.5MAX

0.5MAX

0.5MAX

0.5MAX

 

Size can be adjusted based on buyer's request.


FC93  Carbon Additive CNBM China Biggest Supplier

FC93  Carbon Additive CNBM China Biggest Supplier

FC93  Carbon Additive CNBM China Biggest Supplier


Q: What are the effects of carbon emissions on the Earth's temperature?
Carbon emissions contribute to the greenhouse effect, trapping heat in the Earth's atmosphere and leading to an increase in global temperatures. This phenomenon, known as global warming, has numerous adverse effects such as melting ice caps, rising sea levels, extreme weather events, and disrupted ecosystems.
Q: I heard that 85 of the furnace rock carbon harmony, and the result that I use advanced strengthening machine when I want to give high-grade furnace rock carbon, this how ah?
This can be purchased in previous events, but not at the moment, but after all, there has been a high-level reinforcement machine, which is expected to come out later
Q: What are the consequences of increased carbon emissions on urban areas?
Increased carbon emissions have numerous consequences on urban areas. Firstly, it leads to a rise in air pollution, contributing to respiratory issues and increased health risks for the population. Additionally, carbon emissions contribute to the greenhouse effect, leading to higher temperatures and exacerbating the urban heat island effect, which can result in discomfort, heat-related illnesses, and increased energy demands for cooling. Moreover, increased carbon emissions contribute to climate change, leading to more frequent and intense extreme weather events like storms and heatwaves, which pose significant threats to urban infrastructure, public safety, and economic stability. Overall, the consequences of increased carbon emissions on urban areas are detrimental to both the environment and human well-being.
Q: What is carbon offsetting in the energy sector?
Carbon offsetting in the energy sector refers to the practice of compensating for the greenhouse gas emissions produced by energy generation and consumption activities. It involves investing in projects or initiatives that reduce or remove carbon dioxide (CO2) or other greenhouse gas emissions from the atmosphere, with the aim of balancing out the emissions being released into the atmosphere. The energy sector is a significant contributor to global greenhouse gas emissions, particularly through the burning of fossil fuels such as coal, oil, and natural gas. Carbon offsetting in this sector aims to mitigate the environmental impact of these emissions by funding projects that promote renewable energy, energy efficiency, and other carbon reduction measures. There are various types of projects that can be supported through carbon offsetting in the energy sector. For example, investments can be made in renewable energy projects like wind farms, solar power plants, or hydropower facilities, which generate clean energy without emitting greenhouse gases. These projects help to displace fossil fuel-based energy sources, reducing overall emissions from the energy sector. Additionally, energy efficiency projects can be supported through carbon offsetting. These initiatives focus on reducing energy consumption by implementing energy-efficient technologies, improving insulation, or optimizing industrial processes. By reducing the amount of energy needed, these projects indirectly lead to lower greenhouse gas emissions. Furthermore, carbon offsetting in the energy sector can also involve the support of initiatives that remove carbon dioxide from the atmosphere. These projects often include reforestation or afforestation efforts, which involve planting trees or restoring degraded forests. Trees absorb and store carbon dioxide through photosynthesis, helping to offset emissions and counteract climate change. Overall, carbon offsetting in the energy sector plays a crucial role in transitioning to a more sustainable and low-carbon future. By investing in projects that reduce or remove greenhouse gas emissions, it allows individuals, organizations, and governments to take responsibility for their carbon footprint and contribute to global efforts in combating climate change.
Q: What's the difference between blue and red Panasonic batteries (carbon)?
Blue is leak, proof, general, Purpose, general use battery (leak proof)Red is the long life long life battery (suitable for watches and clocks and other small power appliances)And heavy duty green seems to be good for high power appliances, such as toy cars
Q: But their chemical symbols are different, so they are different elements, different substances, but they feel the same thing... Tangled up ~!
One kind is metal, one kind is nonmetal, the property is not lively, the property is stable,
Q: What are the consequences of increased carbon emissions on indigenous communities?
Increased carbon emissions have significant consequences on indigenous communities. Firstly, these communities often rely on the land and natural resources for their livelihoods, so environmental degradation caused by carbon emissions can directly impact their ability to hunt, fish, and gather food. Additionally, climate change resulting from carbon emissions leads to more frequent and intense natural disasters, such as hurricanes and droughts, which can destroy homes and infrastructure in indigenous communities. Moreover, the loss of traditional knowledge and cultural practices associated with the changing environment can have profound social and psychological impacts on indigenous peoples. Overall, increased carbon emissions exacerbate existing inequalities and vulnerabilities faced by indigenous communities, threatening their way of life, well-being, and resilience.
Q: How does carbon impact the availability of freshwater resources?
The availability of freshwater resources is impacted by carbon in several interconnected ways. Climate change is one of the primary means through which carbon affects freshwater availability. The burning of fossil fuels and other human activities result in increased levels of carbon dioxide in the atmosphere, which contributes to global warming. This warming, in turn, leads to changes in precipitation patterns, including alterations in rainfall distribution and intensity. The emission of carbon also leads to warmer temperatures, which can cause higher rates of evaporation and more frequent and severe droughts in specific regions. These droughts reduce the amount of water accessible for freshwater resources like rivers, lakes, and reservoirs. Furthermore, the shifting climate can disrupt natural water cycles, impacting the replenishment of groundwater aquifers, which are essential sources of freshwater. Moreover, the quality of freshwater resources is impacted by carbon. The increased carbon emissions reacting with atmospheric moisture result in acid rain, which acidifies freshwater bodies and renders them unsuitable for many aquatic organisms. This disruption to ecosystems can lead to the loss of species that depend on freshwater resources for their survival. Another manner in which carbon affects freshwater availability is through its influence on land use. The conversion of forests and wetlands into agricultural or urban areas releases carbon stored in vegetation and soil. This not only adds to carbon emissions but also diminishes the ability of natural ecosystems to retain and filter water. Forests, for instance, play a crucial role in maintaining the water cycle by absorbing rainfall and gradually releasing it into streams and groundwater. Deforestation disrupts this process and can result in reduced water availability downstream. In conclusion, carbon emissions have a profound impact on the availability of freshwater resources. Through climate change, carbon alters precipitation patterns, resulting in droughts and decreased water availability. It also affects the quality of freshwater through phenomena like acid rain. Moreover, land-use changes driven by carbon emissions can further diminish freshwater availability by disrupting natural water cycles.
Q: How does carbon dioxide affect the growth of marine organisms?
Carbon dioxide affects the growth of marine organisms by increasing water acidity, which can hinder their ability to build shells and skeletons, disrupt their reproductive cycles, and ultimately lead to reduced growth and survival rates.
Q: How is carbon used in the production of carbon fiber?
Carbon is a crucial component in the production of carbon fiber. Carbon fibers are made by subjecting a precursor material, usually a type of polymer such as polyacrylonitrile (PAN) or rayon, to a series of heating and chemical treatments. The precursor material is first heated to a high temperature in the absence of oxygen, a process known as carbonization. During this stage, the precursor undergoes pyrolysis, which breaks down the molecular structure and removes non-carbon elements like hydrogen, oxygen, and nitrogen. After carbonization, the resulting material is a carbon-rich structure known as a carbonized fiber or char. However, the material is still not considered carbon fiber at this point. To transform the char into carbon fibers, it undergoes further processing steps called stabilization and graphitization. During stabilization, the char is heated in the presence of oxygen, which leads to the formation of cross-linked structures. This step helps to improve the fiber's thermal stability and prevents it from shrinking or deforming during subsequent processing. The stabilized material is then heated to a higher temperature in an inert atmosphere during graphitization. This process aligns the carbon atoms within the fiber, creating a highly ordered and crystalline structure. Throughout this entire process, carbon is the main building block of the resulting carbon fiber. Starting from the precursor material, which contains carbon atoms, the carbonization and graphitization steps remove impurities and rearrange the carbon atoms to form a strong and lightweight fiber. The resulting carbon fiber exhibits exceptional properties such as high strength-to-weight ratio, stiffness, and resistance to heat and chemicals, making it a valuable material in various industries, including aerospace, automotive, and sporting goods.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords