• FC90-95 Recarburizer/Carbon Additive CNBM System 1
  • FC90-95 Recarburizer/Carbon Additive CNBM System 2
  • FC90-95 Recarburizer/Carbon Additive CNBM System 3
  • FC90-95 Recarburizer/Carbon Additive CNBM System 4
FC90-95 Recarburizer/Carbon Additive CNBM

FC90-95 Recarburizer/Carbon Additive CNBM

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
0 m.t.
Supply Capability:
100000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Packaging & Delivery

Packaging Detail:25kgs/50kgs/1ton per bag or as buyer's request
Delivery Detail:Within 20 days after receiving corect L/C

Application

The Calcined Anthracite Coal/Gas Calcined Anthracite Coal/Carbon Raiser is mainly used in steelmaking in electrical stove, screening water, shipbuilding sandblast to remove rust. It can reduce the cost of steelmaking effectively by replacing the traditional petroleum coke of carburant.Also can improve the Carbon content in steel-melting and Ductile iron foundry.

Specifications

Calcined Anthracite
Fixed carbon: 90%-95%
S: 0.5% max
Size: 0-3. 3-5.3-15 or as request

Calcined Anthracite is produced using the best Anthracite-Taixi Anthracite with low S and P, It is widely used in steel making and casting.

General Specification of Calcined Anthracite:


PARAMETER   UNIT GUARANTEE VALUE

F.C.%

95MIN

94MIN

93MIN

92MIN

90MIN

ASH %

4MAX

5MAX

6MAX

7MAX

8MAX

V.M.%

1 MAX

1MAX

1.5MAX

1.5MAX

1.5MAX

SULFUR %

0.5MAX

0.5MAX

0.5MAX

0.5MAX

0.5MAX

MOISTURE %

0.5MAX

0.5MAX

0.5MAX

0.5MAX

0.5MAX


Size can be adjusted based on buyer's request.

Pictures of Calcined Anthracite:

FC 90%-95% Calcined AnthraciteFC 90%-95% Calcined AnthraciteFC 90%-95% Calcined AnthraciteFC 90%-95% Calcined Anthracite


We can supply below furnace charges, please feel free to contact us if you areinterested in any of any of them:
Coke (Metallurgical, foundry, gas)


Calcined Anthracite with fixed carbon from 90% to 95%


Calcined Petroleum Coke


Graphite petroleum coke


Amorphous Graphite


Q: What do you stand for?Tar, smoke, nicotine, and carbon monoxide. What do you mean? What's the size of the smoke, or the size of the smoke? What's the connection? Smoking is harmful, so how do you choose to smoke smaller cigarettes?
Compared with the 1mg now, but the taste of light to you simply don't get things, unable to meet the physiological needs, will be more big. So the deep harm than simple 5mg smoke into the lungs and then exhale.Just feel well enough on the line. This was something very mysterious, you can go to a professional ask smoking community. Um. Provide a product Baidu search on it. Is a product tasting tea smoke forum.
Q: What are the impacts of carbon emissions on the stability of polar ice caps?
Carbon emissions have significant impacts on the stability of polar ice caps. The increased concentration of carbon dioxide in the atmosphere, primarily due to human activities, leads to global warming. This rise in temperature causes the polar ice caps to melt at an accelerated rate. As a result, the ice caps shrink, leading to rising sea levels and increased coastal flooding. The loss of ice also disrupts ecosystems and threatens the survival of various species, such as polar bears and seals, which depend on the ice for their habitat and food sources. Overall, carbon emissions play a major role in destabilizing the polar ice caps and pose grave consequences for both the environment and human populations.
Q: How is carbon used in the production of plastics?
Plastics heavily rely on carbon, an indispensable ingredient, for their manufacturing. These polymers consist of extensive chains formed by repeating units, known as monomers. These monomers, in turn, consist of smaller molecules. Carbon atoms constitute a vital element in these monomers, serving as the foundation for the polymer chain. To acquire carbon for plastic production, diverse petroleum products, like crude oil and natural gas, are sourced. These fossil fuels contain hydrocarbons, which are organic compounds comprised of carbon and hydrogen atoms. Through a refining process called cracking, hydrocarbons are broken down into smaller molecules, including ethylene and propylene, which serve as the basic building blocks for numerous plastic types. Once these monomers are acquired, they are polymerized, meaning they are chemically bonded together to create lengthy chains. Carbon atoms play a critical role in this procedure, as they connect to shape the backbone structure of the polymer chain. The specific arrangement and bonding of carbon atoms dictate the properties of the resulting plastic, including its strength, flexibility, and durability. It is worth noting that while carbon is crucial, not all plastics are exclusively composed of this element. Other elements, such as oxygen, nitrogen, and chlorine, may be present in the monomers or introduced during production to enhance specific properties or introduce desired functionalities. All in all, carbon serves as a fundamental element in plastic production. It establishes the backbone structure, enabling the versatility and wide array of applications of plastic materials across various industries.
Q: How does carbon impact the availability of clean transportation?
The contribution of carbon to greenhouse gas emissions affects the availability of clean transportation. Carbon dioxide (CO2) is a significant greenhouse gas that is responsible for climate change. When fossil fuels are burned in traditional transportation systems, they release large amounts of CO2 into the atmosphere. As a result, there is an urgent need for cleaner alternatives in the transportation sector. Clean transportation options, such as electric vehicles (EVs) and hydrogen fuel cell vehicles, have been designed to minimize carbon emissions. These vehicles use electricity or hydrogen as their primary source of energy, resulting in zero tailpipe emissions. This greatly reduces the carbon footprint associated with transportation. However, the availability and adoption of these clean transportation solutions are directly influenced by carbon-related factors. One important factor is the energy infrastructure required to support clean transportation. Electric vehicles, for instance, depend on charging stations and a reliable power grid. It is crucial to produce clean electricity from renewable sources like solar and wind to ensure that EVs are truly emission-free. Therefore, the carbon intensity of the electricity grid plays a crucial role in determining the environmental impact of electric transportation. Moreover, the availability of carbon-neutral fuels is another significant aspect. Hydrogen fuel cell vehicles, which use hydrogen to generate electricity, require a readily available and sustainable source of hydrogen. Currently, most hydrogen is produced from natural gas, which emits CO2 during the production process. However, advancements in technologies like electrolysis, which uses renewable electricity to produce hydrogen, are making way for carbon-free hydrogen production. Additionally, carbon pricing and policies also influence the availability of clean transportation. Governments and organizations incentivize the adoption of low-carbon transportation options by placing a price on carbon emissions. This can lead to increased investments in clean transportation infrastructure, research, and development, ultimately making clean transportation solutions more available and affordable. In conclusion, the emissions of carbon from traditional transportation systems have necessitated the development and availability of clean transportation alternatives. Factors such as energy infrastructure, availability of carbon-neutral fuels, and supportive policies all impact the availability and accessibility of clean transportation. By addressing carbon impacts, we can expedite the transition to a more sustainable and environmentally-friendly transportation system.
Q: How are fossil fuels formed from carbon?
Fossil fuels are formed from carbon through a natural process that takes millions of years. The process begins with the remains of plants and animals that lived millions of years ago. These remains, which contain carbon, get buried under layers of sediment in oceans, swamps, and other bodies of water. Over time, the pressure from the layers of sediment and the heat from the Earth's crust cause a process called diagenesis to occur. During diagenesis, the organic matter in the remains undergoes chemical changes, transforming it into a substance known as kerogen. As more layers of sediment continue to accumulate, the temperature and pressure increase further. Eventually, the kerogen undergoes a process called catagenesis, where it is heated to even higher temperatures. This causes the kerogen to break down and transform into liquid and gaseous hydrocarbons, which are the main components of fossil fuels. The liquid hydrocarbons form what is known as crude oil or petroleum, while the gaseous hydrocarbons form natural gas. Both of these fossil fuels can be extracted from the Earth's crust through drilling. In summary, fossil fuels are formed from carbon through a complex and lengthy process involving the burial, pressure, and heat of organic matter over millions of years. This process transforms the carbon-rich remains into hydrocarbons, which become the valuable resources that we use as fossil fuels today.
Q: The dangers of grilled BBQ on humansWhat are the dangers of a charcoal barbecue?
Many people may be skeptical - burnt food really carcinogenic? The American Cancer Society will actively publicly called for "eat barbecue foods, because according to the result of medical research, a piece of a pound (about three steaks) barbecue steak, enough to produce carcinogenic substances the equivalent of six hundred cigarettes, which is one reason why many people do not smoke get lung cancer.According to animal experiment confirms that burnt food can lead to animal cancer.
Q: Who is the high carbon content of stainless steel and ordinary steel?
This is not necessarily stainless steel is carbon steel, based on the addition of zinc, nickel and chromium and other elements
Q: What is carbon neutral construction?
Carbon neutral construction refers to a sustainable approach to building and designing structures that minimizes or offsets the amount of carbon emissions produced during the construction process. It aims to achieve a balance between the amount of carbon emissions released into the atmosphere and the amount that is removed or offset through various measures. To achieve carbon neutrality in construction, several strategies can be implemented. Firstly, energy-efficient design principles are employed to minimize the overall energy consumption of the building. This can include the use of insulation, efficient HVAC systems, and energy-efficient appliances and lighting. Additionally, sustainable building materials are utilized, such as recycled materials or those with a low carbon footprint. This reduces the energy required for the production and transportation of materials, thereby minimizing carbon emissions. Furthermore, renewable energy sources are integrated into the construction process. This may involve installing solar panels, wind turbines, or geothermal systems to generate clean energy for the building's operations. By reducing dependence on fossil fuels, carbon emissions associated with energy consumption are significantly reduced. Carbon offsetting is another key component of carbon neutral construction. This involves investing in projects or initiatives that reduce or remove greenhouse gas emissions elsewhere, effectively offsetting the emissions produced during construction. Examples of carbon offsetting activities include reforestation projects, investment in renewable energy projects, or supporting methane capture initiatives. Ultimately, carbon neutral construction aims to reduce the environmental impact of building construction and operation by minimizing carbon emissions throughout the entire lifecycle of the building. By adopting energy-efficient design principles, utilizing sustainable materials, integrating renewable energy sources, and offsetting carbon emissions, carbon neutral construction contributes to mitigating climate change and creating a more sustainable future.
Q: What is carbon nanophotonics?
The study and manipulation of light at the nanoscale using carbon-based materials is known as carbon nanophotonics. This branch of science and technology integrates carbon nanotubes, graphene, and diamond nanoparticles with photonics to develop new optical devices and systems. Carbon-based nanomaterials possess exceptional electrical conductivity, high mechanical strength, and excellent optical properties, making them ideal for nanophotonics applications. These materials can confine and manipulate light at the nanoscale, enabling the miniaturization of optical components and enhancing light-matter interactions. Carbon nanophotonics has vast potential across various fields. Telecommunications, for instance, can benefit from high-speed and compact photonic devices developed using carbon nanomaterials for efficient data transmission. In the field of sensing, highly sensitive and selective sensors can be developed using carbon nanophotonics to detect different molecules and substances. Furthermore, carbon nanomaterials can enhance the efficiency of solar cells and other photovoltaic devices, contributing to advancements in energy harvesting. In summary, carbon nanophotonics is a rapidly evolving field that combines carbon-based nanomaterials with photonics to create innovative optical technologies. By harnessing the power of light at the nanoscale, this field has the potential to revolutionize industries and drive advancements in science and technology.
Q: How does carbon affect the acidity of oceans?
The acidity of oceans is greatly influenced by carbon dioxide (CO2). Human activities like burning fossil fuels and deforestation release CO2 into the atmosphere, a significant portion of which is absorbed by the oceans. This absorption, known as ocean acidification, causes an increase in hydrogen ions in the water, leading to lower pH levels and higher acidity. When CO2 dissolves in seawater, it combines with water molecules to create carbonic acid (H2CO3). This chemical reaction releases hydrogen ions (H+), which elevate the water's acidity. The increased acidity disrupts the delicate chemical balance necessary for life in the ocean, especially reactions involving calcium carbonate. Calcium carbonate plays a vital role in the formation of shells and skeletons for various marine organisms, such as corals, shellfish, and certain plankton. As ocean acidity rises, it becomes more challenging for these creatures to construct and maintain their calcium carbonate structures. This can result in stunted growth, weakened shells, and heightened susceptibility to predators and diseases. Ocean acidification also has implications for the entire marine food chain. Many species depend on shell-forming organisms as a food source or as habitats, and their decline can have a ripple effect on the entire ecosystem. Additionally, acidification can disrupt the balance of phytoplankton, which are microscopic plants crucial for marine food chains. Furthermore, carbon dioxide in the ocean can interact with water to generate bicarbonate ions (HCO3-) and carbonate ions (CO32-). These ions are crucial for maintaining proper pH levels and enabling marine organisms to regulate their internal chemistry. However, as CO2 levels increase, the concentration of carbonate ions decreases, making it more challenging for organisms to obtain the carbonate they need to build their shells and skeletons. Overall, the impact of carbon on ocean acidity is significant and has far-reaching consequences for marine life. It is essential to reduce carbon emissions and implement measures to mitigate and adapt to the effects of ocean acidification in order to safeguard the health and biodiversity of our oceans.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches