• FC 92Min Calcined Anthracite Coal Low Price System 1
  • FC 92Min Calcined Anthracite Coal Low Price System 2
FC 92Min Calcined Anthracite Coal Low Price

FC 92Min Calcined Anthracite Coal Low Price

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
0 m.t.
Supply Capability:
100000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Packaging & Delivery

Packaging Details:1. carbon additive in 1 MT jumbo bag 2. carbon additive in 25kg PP bag 3. carbon additive in 50 kg woven bag 4. carbon additive in bags then put them on pallet 5.bulk in container 6.as your requirements
Delivery Detail:within 10 days after receiving 30% deposit or LC


Product Description

Carbon additive (carbon raiser) with characteristic of low ash and low sulfur is made from calcined petroleum coke, graphite petroleum coke or high quality anthracite coal . As an ideal  recarburizer  and intermediate reactor, it has been widely used in different industries like metallurgy, chemistry, machinery, electricity, etc.

 

The selection of a charging carbon is determined by the quality requirements of the steel or ferroalloy production as well as the cost and availability of carbon products. So the recarburizer is mainly used  in the metallurgy to increase the content of carbon. 

Specifications

Calcined Anthracite Coal 
Fixed carbon: 90%-95% 
S: 0.5% max 
Size: 0-3. 3-5.3-15 or as request 

General Specification of Calcined Anthracite coal

PARAMETER   UNIT GUARANTEE VALUE

F.C.%

95MIN

94MIN

93MIN

92MIN

90MIN

ASH %

4MAX

5MAX

6MAX

7MAX

8MAX

V.M.%

1 MAX

1MAX

1.5MAX

1.5MAX

1.5MAX

SULFUR %

0.5MAX

0.5MAX

0.5MAX

0.5MAX

0.5MAX

MOISTURE %

0.5MAX

0.5MAX

0.5MAX

0.5MAX

0.5MAX

Size can be adjusted based on buyer's request.

Pictures of Calcined AnthraciteCoal:




Q:How is carbon used in the production of solar cells?
Carbon is not typically used in the production of solar cells as a primary material. However, carbon-based materials such as carbon nanotubes or graphene may be used as conductive additives or in electrode materials to enhance the efficiency and performance of solar cells.
Q:I bought a grill myself and went to barbecue with my friends the day after tomorrow, but I can't ignite the carbon. What should I do?
Solution 1: the most traditionalTake paper and other ignition, put the following, carbon placed on the top, ignition paper charcoal ignition, pay attention to charcoal do not put too much, easy to put pressure on the fire out, paper ignition may be a little larger.Solution 2: save troubleThe carbon code, to Erguotou pouring point below the carbon, then lit on OK.Solution 3: the most technical contentMake a fire by the side; burn the charcoal red and then put it in the oven.Solution 4: laziestThere are other people around here to barbecue, to have some ready-made kindling, and politely change it with carbon.Solution 5: the most technologyBuy carbon crystals and ignite with carbon crystals. Carbon is divided into three categories, one is carbon powder and igniting agent, also called charcoal is a plus; alcohol and other ingredients do, also called solid alcohol; the other is paraffin with sawdust, called carbon, smokeless tasteless, easy to ignite. Carbon is mainly used as Hot pot barbecue, combustion. The correct way is to use the two to three grains of carbon on the stove, the fire when the fire ignited, and then the charcoal frame at the top, the use of carbon combustion heat ignited charcoal. That is, the heat is up to go, put on the above carbon charcoal burning, it must be difficult to ignite charcoal.
Q:Often see the so-called 30T, 46T, 60T carbon fiber, 60T carbon fiber, equivalent to T hundreds of carbon fibers, is T800, or T1000? I'm not very good at parameter conversion. Is there a parameter list? How do I correspond to the T300T700T800 performance parameter table?
One, 60T carbon fiber and T hundreds of carbon fiber does not have any corresponding, 60T belongs to M series (high modulus carbon fiber). Only 30T corresponds to T800.
Q:What are the carbon nanotube applications?
The application of carbon nanotubes in composite materials: carbon nanotubes with nanoparticles in size effect, but also has high mechanical strength, good flexibility, high conductivity, unique properties, become the ideal reinforcement of polymer composites, is widely used in chemical industry, machinery, electronics, aviation, aerospace and other fields. But because of carbon nanotubes are easily assembled into bundles or wound, and compared with other nanoparticles, the surface is relatively inert, in common organic solvents or polymer materials dispersion in the low, which greatly restricts its application. Therefore, the surface of carbon nanotubes modified carbon nanotubes has become a research hotspot the polymer / composite material. At present, the domestic and foreign research on the surface modification of carbon nanotubes is mainly covalent and non covalent bond groups introduced on the surface, such as the use of the surface Chemical modification, surfactant modification, or by coating modification methods of carbon nanotube polymer molecules. In recent years is presented. The ultraviolet irradiation, plasma radiation modification and processing method. The surface modification of carbon nanotubes for polymer composites can significantly improve the mechanical properties, electrical properties and thermal properties.
Q:How to extinguish the charcoal fire?
Charcoal air on the line, but also can use water, but there will be a lot of gases
Q:How is carbon used in the production of activated carbon filters?
Carbon is used in the production of activated carbon filters because of its highly porous structure. This porous structure provides a large surface area for adsorption, allowing the carbon to effectively trap and remove contaminants such as chemicals, odors, and impurities from air or water.
Q:What are the impacts of carbon emissions on the stability of river ecosystems?
The stability of river ecosystems is significantly affected by carbon emissions, which have various consequences. One of the main outcomes of carbon emissions is the rise in greenhouse gases in the atmosphere, resulting in global warming. This increase in temperature directly and indirectly impacts river ecosystems. To begin with, higher temperatures can modify the physical characteristics of rivers and impact the availability of oxygen in the water. Warmer water holds less dissolved oxygen, which can be harmful to aquatic organisms like fish and invertebrates that depend on oxygen for survival. The decrease in oxygen levels can lead to a decrease in biodiversity and even cause fish to die. Furthermore, climate change caused by carbon emissions can disrupt the natural hydrological cycle. Changes in precipitation patterns can lead to droughts or floods, causing fluctuations in river flow. These alterations can affect the reproductive and migration patterns of many aquatic species, disturbing their life cycles and reducing their populations. Additionally, modified river flows can also affect the stability of riverbank and riparian habitats, resulting in erosion and habitat loss. Moreover, increased carbon emissions contribute to ocean acidification. When water absorbs carbon dioxide, it forms carbonic acid, which lowers the pH of the water. Acidic waters can have harmful effects on aquatic life, including shellfish, corals, and other organisms that calcify. River ecosystems are interconnected with coastal and marine ecosystems, so the consequences of ocean acidification can indirectly impact river ecosystems through the food chain. Furthermore, carbon emissions contribute to the deposition of air pollutants, such as nitrogen and sulfur compounds, onto land and water bodies. These pollutants can be carried by rainfall into rivers, leading to increased nutrient levels and eutrophication. Excessive nutrients can cause harmful algal blooms, deplete oxygen levels, and create dead zones, further disturbing the balance of river ecosystems. In conclusion, the stability of river ecosystems is profoundly impacted by carbon emissions. Rising temperatures, altered hydrological cycles, ocean acidification, and increased nutrient levels all contribute to the degradation of these ecosystems. It is essential to reduce carbon emissions and adopt sustainable practices to mitigate these impacts and preserve the health and stability of river ecosystems.
Q:What are the impacts of carbon emissions on the stability of mangroves?
Mangroves, crucial coastal ecosystems, are negatively affected by carbon emissions, which have detrimental effects on their stability. The increased levels of carbon dioxide (CO2) in the atmosphere contribute to global warming, resulting in rising sea levels and more frequent and intense storms. These changes directly impact mangroves in several ways. Firstly, global warming causes rising sea levels, leading to more frequent inundation of mangroves. As the sea level rises, saltwater intrusion occurs more often, disrupting the delicate balance of saltwater and freshwater in mangrove ecosystems. This can displace and cause a decline in mangroves, as they struggle to adapt to the changing conditions. Secondly, the increased frequency and intensity of storms due to climate change can physically damage mangroves. Mangroves act as a natural barrier, absorbing wave energy and protecting coastlines from storm surges. However, stronger storms test the resilience of mangroves, potentially uprooting or destroying them, leaving the coastlines vulnerable to erosion and further damage. Additionally, carbon emissions are linked to ocean acidification, which occurs when excess CO2 is absorbed by the oceans. Acidic waters negatively impact the growth and development of mangroves, as they are sensitive to changes in pH levels. This can lead to reduced productivity, stunted growth, and even death of mangroves, further destabilizing these ecosystems. The stability of mangroves is crucial for both the environment and human populations. Mangroves provide essential habitats for various species, acting as a nursery for fish and supporting biodiversity. They also serve as carbon sinks, absorbing significant amounts of CO2 from the atmosphere. Furthermore, mangroves play a vital role in coastal protection, mitigating erosion, storm surges, and flooding impacts. To mitigate the effects of carbon emissions on mangrove stability, it is crucial to reduce greenhouse gas emissions and limit global warming. This can be achieved by adopting clean energy sources, implementing conservation efforts, and initiating reforestation projects. Equally important is the protection and restoration of mangrove habitats, as this helps maintain their stability and resilience to climate change impacts.
Q:How does carbon affect the acidity of oceans?
The acidity of oceans is greatly influenced by carbon dioxide (CO2). Human activities like burning fossil fuels and deforestation release CO2 into the atmosphere, a significant portion of which is absorbed by the oceans. This absorption, known as ocean acidification, causes an increase in hydrogen ions in the water, leading to lower pH levels and higher acidity. When CO2 dissolves in seawater, it combines with water molecules to create carbonic acid (H2CO3). This chemical reaction releases hydrogen ions (H+), which elevate the water's acidity. The increased acidity disrupts the delicate chemical balance necessary for life in the ocean, especially reactions involving calcium carbonate. Calcium carbonate plays a vital role in the formation of shells and skeletons for various marine organisms, such as corals, shellfish, and certain plankton. As ocean acidity rises, it becomes more challenging for these creatures to construct and maintain their calcium carbonate structures. This can result in stunted growth, weakened shells, and heightened susceptibility to predators and diseases. Ocean acidification also has implications for the entire marine food chain. Many species depend on shell-forming organisms as a food source or as habitats, and their decline can have a ripple effect on the entire ecosystem. Additionally, acidification can disrupt the balance of phytoplankton, which are microscopic plants crucial for marine food chains. Furthermore, carbon dioxide in the ocean can interact with water to generate bicarbonate ions (HCO3-) and carbonate ions (CO32-). These ions are crucial for maintaining proper pH levels and enabling marine organisms to regulate their internal chemistry. However, as CO2 levels increase, the concentration of carbonate ions decreases, making it more challenging for organisms to obtain the carbonate they need to build their shells and skeletons. Overall, the impact of carbon on ocean acidity is significant and has far-reaching consequences for marine life. It is essential to reduce carbon emissions and implement measures to mitigate and adapt to the effects of ocean acidification in order to safeguard the health and biodiversity of our oceans.
Q:There are several allotropes of carbon
Allotrope of carbon: diamond, graphite, carbon 60 (fullerene), amorphous carbon (charcoal, coke, activated carbon, etc.)

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches