• Best Solar Inverter Off Grid - DC to AC Solar Power Charger Function Inverter System 1
  • Best Solar Inverter Off Grid - DC to AC Solar Power Charger Function Inverter System 2
  • Best Solar Inverter Off Grid - DC to AC Solar Power Charger Function Inverter System 3
  • Best Solar Inverter Off Grid - DC to AC Solar Power Charger Function Inverter System 4
  • Best Solar Inverter Off Grid - DC to AC Solar Power Charger Function Inverter System 5
Best Solar Inverter Off Grid - DC to AC Solar Power Charger Function Inverter

Best Solar Inverter Off Grid - DC to AC Solar Power Charger Function Inverter

Ref Price:
get latest price
Loading Port:
China main port
Payment Terms:
TT or LC
Min Order Qty:
100000 watt
Supply Capability:
16000000 watt/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

 

1.   Structure of DC to AC Solar Power Charger Function Inverter Description

It is an electronic system that operates the photovoltaic(PV) modules in a manner that allows the modules to produce all the power they are

capable of. The solar mate charge controller is a microprocessor-based system designed to implement the MPPT. It can increase charge

current up to 30% or more compared to traditional charge controllers.

 

2.       Main Features of the DC to AC Solar Power Charger Function Inverter

Our inverter is designed AC priority by default. This means, when AC input is present, the battery will be charged first.

When you choose battery priority(Battery type selector on 7-9), then inverter will invert from battery despite the AC input. Only when the

battery voltage reaches low voltage alarm point will be inverter transfer to AC input, charge battery and switch back to battery when the

battery is fully charged. This function is mainly for wind/'solar systems using utility power as back up.

 

3.  DC to AC Solar Power Charger Function Inverter Images

 

DC to AC Solar Power Charger Function Inverter

DC to AC Solar Power Charger Function Inverter

DC to AC Solar Power Charger Function Inverter

DC to AC Solar Power Charger Function Inverter

 

4.  DC to AC Solar Power Charger Function Inverter Specification

Hybrid Inverter

MPPT solar controller function

Rated Voltage

12/24V DC

Rated Charge current

40A

Load current

15A

Input voltage range

15-55V DC

Max. PV open circuit array voltage

55V DC

Typical idle consumption

At idle< 10mA

Overload protection(DC load)

2.0*Inom>5s 1.5*Inom>20s 1.25*Inom temperature controlled

Bulk charge

14.6V(default)

29.2V(default)

Floating charge

13.4V(default)

26.8V(default)

Equalization charge

14.0V(default)

28.0V(default)

Over charge disconnection

14.8V

29.6V

Over charge recovery

13.6V

27.2V

Over discharge disconnection

10.8V(default)

21.6V(default)

Over discharge reconnection

12.3V

24.6V

Temperature compensation

13.2mV/C

26.4mV/C

Lead acid battery settings

Adjustable

NiCad battery settings

Adjustable

Load control mode

1.Low Voltage Reconnect(LVR):Adjustable 2.Low Voltage Disconnect(LVD):Automatic disconnection 3.Reconnection:Includes warning flash before disconnect and reconnection

Low voltage reconnect

12.0-14.0Vdc

24.0-28.0Vdc

low voltage disconnet

10.5-12.5Vdc

21.0-25.0Vdc

Ambient temperature

0-40°C(full load) 40-60°C(de-rating)

Altitude

Operating5000m,Non-Operating 16000m

Protection class

IP21

Battery temperature sensor

BTS-optional remote battery temperature sensor for increased charging precision

Terminal size(fine/single wire)

#8 AWG

 

Solar inverter battery priority

MODEL

1000w

1500w

2000w

3000w

Input Voltage Waveform

Sinusoidal (utility or generator)

Nominal Input Voltage

230Vac

Low Line Disconnect

155Vac±4%

High Line Disconnect

265Vac±4%

Max AC Input Voltage

270Vrms

Nominal Input Frequency

50Hz/ 60Hz (Auto detection)

Over-Load Protection

Circuit breaker

Output Short Circuit Protection

Circuit breaker

Efficiency (Line Mode)

>95%

Transfer Switch Rating

30A

Transfer Time(Ac to Dc)

20ms (typical)

Output Voltage Waveform

Sine wave

Rated Output Power (W)

1000W

1500W

1500W

2000W

2000W

3000W

3000W

Power Factor

1

Nominal Output Voltage (V)

230Vac

Output Voltage Regulation

±10% rms

Nominal Efficiency

>80%

Nominal DC Input Voltage

12V

12V

24V

12V

24V

12V

24V

Nominal Charge Current

35A

45A

35A

65A

35A

75A

45A

Charge Current Regulation

± 5A

Battery initial voltage

0 –15.7 Vdc /31.4Vdc(can operate with 0V battery)

Communication:

RJ11 (Used for factory testing. No customer interface available)

Safety Certification

CE(EN60950)

EMI Classification

EN50091-2, CLASS A

Operating Temperature Range

0°C to 40°C

Storage temperature

-15ºC ~ 60ºC

Operation humidity

5% to 95%

Audible Noise

60dB max

Cooling

Forced air, variable speed fan

 

5.  FAQ of DC to AC Solar Power Charger Function Inverter

Q1. What is the difference between inverter and solar inverter?
A1. Inverter only has AC inpput, but solar inverter both connect to AC input and solar panel, it saves more power.

 

Q2. What is the difference between MPPT&PWM?
A2. MPPT has higher efficiency, it can track the max power point and won't waste energy.

 

Q3. What is the waranty of product?
A3. 12 months.

Q: Can a solar inverter be used with solar-powered recreational vehicles (RVs)?
Yes, a solar inverter can be used with solar-powered recreational vehicles (RVs). A solar inverter converts the DC (direct current) energy generated by solar panels into AC (alternating current) energy that can be used to power various appliances and devices in an RV. This allows RV owners to utilize solar energy for their electrical needs while on the road.
Q: What is the role of a maximum power control feature in a solar inverter?
The role of a maximum power control feature in a solar inverter is to optimize the energy output of the solar panels by constantly tracking the maximum power point (MPP) of the solar array. This feature adjusts the operating conditions of the inverter to ensure that it operates at the highest possible efficiency, maximizing the energy harvested from the solar panels and improving overall system performance.
Q: What is the maximum number of parallel inverters that can be connected?
The maximum number of parallel inverters that can be connected depends on various factors such as the design and capacity of the inverters, the load being powered, and the electrical infrastructure. However, in general, there is no fixed maximum number as long as the inverters are properly sized, synchronized, and connected in a well-designed electrical system.
Q: Can a solar inverter be used in a ground-mounted solar system?
Yes, a solar inverter can be used in a ground-mounted solar system. In fact, ground-mounted solar systems commonly utilize solar inverters to convert the direct current (DC) generated by the solar panels into alternating current (AC) that can be used to power homes or businesses or fed back into the electrical grid.
Q: Can a solar inverter be used for off-grid applications?
Yes, a solar inverter can be used for off-grid applications. Off-grid systems typically rely on solar panels to generate power, and a solar inverter is used to convert the direct current (DC) produced by the panels into alternating current (AC) which can be used to power appliances and devices. The inverter also helps regulate the flow of electricity and ensure compatibility with off-grid power storage systems such as batteries.
Q: Can a solar inverter be used with solar-powered electric vehicle charging stations?
Yes, a solar inverter can be used with solar-powered electric vehicle charging stations. A solar inverter is necessary to convert the DC (direct current) power generated by solar panels into AC (alternating current) power that can be used by electric vehicle charging stations. This allows the solar power to be fed into the charging station and used to charge electric vehicles.
Q: PV grid-connected inverter and independent inverter in the control of what is the difference
And you said that the independent inverter, said off-grid inverter it, this inverter can not access the mains, the components of the electricity through the off-grid inverter to the battery charge, the battery at night
Q: How does a solar inverter handle partial shading on solar panels?
A solar inverter handles partial shading on solar panels by employing a technology called Maximum Power Point Tracking (MPPT). MPPT allows the inverter to continuously monitor the voltage and current of each individual solar panel, and adjust the operating point of the panels to maximize power output. When shading occurs on one or more panels, the inverter adjusts the voltage and current of the unshaded panels to compensate for the reduced power output, ensuring the overall system performance is optimized.
Q: Are solar inverters compatible with smart home systems?
Yes, solar inverters are compatible with smart home systems. In fact, many modern solar inverters are designed to integrate seamlessly with smart home technology, allowing homeowners to monitor and control their solar energy production and consumption through their smart devices. This integration enables better energy management, increased efficiency, and the ability to optimize the use of solar power within a smart home ecosystem.
Q: Are there any maintenance requirements for a solar inverter?
Yes, solar inverters do have maintenance requirements. Regular cleaning of the solar inverter and its components is necessary to remove dust and debris. Additionally, checking for loose connections, inspecting for any physical damage, and ensuring proper ventilation are important maintenance tasks. It is also recommended to monitor the inverter's performance regularly and promptly address any issues or errors that may arise.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords