• 50 Amp Solar Inverter - Central Grid-Tied High Efficiency PV Inverter GSL1000 / GSL1250 System 1
  • 50 Amp Solar Inverter - Central Grid-Tied High Efficiency PV Inverter GSL1000 / GSL1250 System 2
  • 50 Amp Solar Inverter - Central Grid-Tied High Efficiency PV Inverter GSL1000 / GSL1250 System 3
  • 50 Amp Solar Inverter - Central Grid-Tied High Efficiency PV Inverter GSL1000 / GSL1250 System 4
  • 50 Amp Solar Inverter - Central Grid-Tied High Efficiency PV Inverter GSL1000 / GSL1250 System 5
50 Amp Solar Inverter - Central Grid-Tied High Efficiency PV Inverter GSL1000 / GSL1250

50 Amp Solar Inverter - Central Grid-Tied High Efficiency PV Inverter GSL1000 / GSL1250

Ref Price:
get latest price
Loading Port:
China main port
Payment Terms:
TT OR LC
Min Order Qty:
50 pc
Supply Capability:
15000 pc/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Specification

Output Power:
1000KW/1250KW
Inveter Efficiency:
98.7%-99%
Output Voltage(V):
400
Input Voltage(V):
1000
Output Current(A):
1444A/1804A
Output Frequency:
50/60Hz

Product Description:

Max. PV voltage up to 1000V Max. 20 DC inputs

Dustproof protection Modular design for  Easy maintenance

Max. DC/AC ratio up to 1.5 Full power output under 55℃

AGC/AVC  Night SVG function LVRT/HVRT/FRT function

Technical Specifications:


FAQ:

Q:How the output voltage of the PV inverter and the grid-connected voltage are determined

Inverter is the DC power (battery, battery) into alternating current (usually 220V, 50Hz sine wave). It consists of inverter bridge, control logic and filter circuit. Widely used in air conditioning, home theater, electric wheel, power tools, sewing machines, DVD, VCD, computer, TV, washing machine, range hood, refrigerator, video recorders, massage, fan, lighting and so on. In foreign countries

Q:Installation and maintenance of photovoltaic grid - connected inverter

only when the local power sector permission by the professional and technical personnel to complete all the electrical connection before the inverter can be connected.

Q:What is the difference between a PV grid-connected inverter and an off-grid inverter?

Off-grid inverter is equivalent to their own to establish an independent small power grid, mainly to control their own voltage, is a voltage source.

Q:After the PV inverter, how to achieve the same period before the network?

Solar panel simulator: with MPPT function, simulated morning, noon, afternoon, evening, rainy weather, solar panels produced under different conditions in different voltages.

Q:Is the PV inverter a current source or a voltage source?

According to the waveform modulation method can be divided into square wave inverter, stepped wave inverter, sine wave inverter and modular three-phase inverter.

Q:Photovoltaic grid-connected inverter without DC emc how will happen

Solar photovoltaic power generation technology is the use of solar cells, the photovoltaic effect of semiconductor materials, solar radiation can be directly converted into a new type of power generation system, solar energy is a radiant energy, solar power means --- to direct conversion of sunlight Into electricity,

Q:What is the difference between low voltage grid connection and medium voltage grid connection?

For photovoltaic power plants when the power system accidents or disturbances caused by photovoltaic power plant grid voltage drop, in a certain voltage drop range and time interval, the photovoltaic power plant can ensure that non-off-line continuous operation.

Q:Is the grid side of the grid and the inverter?

The grid load side of the grid is the grid. The inverter is an important part of the PV grid-connected system and can not be regarded as an external load. Photovoltaic power generation system is included in both grid and off-grid.

Q:PV grid-connected inverter and independent inverter in the control of what is the difference

The independent inverter in the output voltage phase amplitude of the frequency control is initially set good. Independent inverter, you should refer to off-grid inverter, do not need to consider the grid situation.


Product Images:





Production Process Photos:




Q: Can a solar inverter be used with different types of backup power configurations?
Yes, a solar inverter can be used with different types of backup power configurations. Solar inverters are designed to convert the direct current (DC) power generated by solar panels into alternating current (AC) power that can be used to power homes or businesses. They can be integrated with various backup power sources such as battery banks, diesel generators, or grid-connected systems. This flexibility allows for uninterrupted power supply during periods when solar energy is not available, ensuring continuous electricity supply.
Q: Can a solar inverter be used with different AC voltage systems?
No, a solar inverter cannot be used with different AC voltage systems. It is designed to convert the DC power generated by solar panels into a specific AC voltage that is compatible with the electrical grid. Using it with a different AC voltage system could lead to compatibility issues and may damage the inverter or the electrical system.
Q: How is the efficiency of a solar inverter measured?
The efficiency of a solar inverter is typically measured by dividing the output power of the inverter by the input power, and then multiplying the result by 100 to get a percentage value.
Q: What are the advantages of using a three-phase solar inverter?
The advantages of using a three-phase solar inverter include higher efficiency, improved power quality, and the ability to handle larger loads. Three-phase inverters distribute the power generated by solar panels more evenly across all three phases, resulting in balanced power output and reduced losses. This leads to increased overall system efficiency. Additionally, three-phase inverters offer better power quality, minimizing voltage fluctuations and harmonics, which can be beneficial for sensitive electronic equipment. Lastly, these inverters are capable of handling larger electrical loads, making them suitable for commercial and industrial applications.
Q: Can a solar inverter provide power during a blackout?
No, a solar inverter cannot provide power during a blackout. This is because solar inverters are designed to convert the direct current (DC) electricity generated by solar panels into alternating current (AC) electricity for use in homes or businesses. However, during a blackout, the solar panels cannot generate electricity since the grid connection is lost, and therefore the solar inverter cannot provide power.
Q: What is the maximum input voltage for a solar inverter?
The maximum input voltage for a solar inverter typically depends on the specific model and manufacturer. However, in general, solar inverters can handle input voltages ranging from 200 to 1000 volts, with some high-capacity inverters even accommodating higher voltages. It is essential to consult the manufacturer's specifications or user manual to determine the exact maximum input voltage for a specific solar inverter.
Q: What is the role of a solar inverter in reactive power compensation during grid disturbances?
The role of a solar inverter in reactive power compensation during grid disturbances is to regulate and stabilize the flow of reactive power between the solar PV system and the grid. During grid disturbances, such as voltage fluctuations or power factor variations, the solar inverter can actively inject or absorb reactive power to maintain the voltage and power factor within acceptable limits. This helps in improving the overall stability and reliability of the grid system, ensuring efficient power transfer, and minimizing any adverse effects on the grid and connected electrical devices.
Q: What are the common issues and troubleshooting steps for a solar inverter?
Common issues with solar inverters can include issues with the inverter not turning on, no power output, low power output, intermittent power output, or error messages displayed on the inverter. Here are some troubleshooting steps to address these issues: 1. Check the power supply: Make sure that the inverter is properly connected to the power source and that there is no issue with the electrical supply. Check the circuit breaker or fuse box to ensure it has not tripped. 2. Inspect the wiring: Examine the wiring connections to ensure they are secure and not damaged. Loose or disconnected wires can cause power issues. If any damage is found, consider contacting a professional electrician to repair or replace them. 3. Clean solar panels: Dust, debris, or shading on solar panels can reduce the power output. Clean the panels using a soft cloth or a hose. If there is shading from nearby trees or structures, consider trimming or removing them if possible. 4. Check for error messages: If the inverter displays an error message, refer to the user manual or manufacturer's website for the meaning of the error code and recommended troubleshooting steps. If necessary, contact the manufacturer's customer support for further assistance. 5. Monitor the weather conditions: Solar inverters may have reduced power output during cloudy or overcast days. However, if the power output is consistently low even in optimal weather conditions, there may be an issue with the inverter itself. 6. Reset the inverter: Some inverters have a reset button or option. Try resetting the inverter to its factory settings, but keep in mind that doing so may erase any customized settings or configurations. 7. Firmware updates: Check if there are any available firmware updates for your specific inverter model. Updating the firmware can sometimes resolve issues and improve performance. 8. Consult a professional: If the troubleshooting steps above do not resolve the issue, it is recommended to contact a professional solar installer or electrician. They have the expertise and equipment to diagnose and repair more complex issues with solar inverters. Remember, safety should always be a priority when troubleshooting electrical equipment. If you are unsure or uncomfortable with any troubleshooting steps, it is best to seek professional assistance to avoid any potential hazards.
Q: What is the role of ground fault protection in a solar inverter?
The role of ground fault protection in a solar inverter is to detect and mitigate any potential faults or abnormalities in the system's grounding. It ensures the safety of the system and personnel by quickly identifying and isolating ground faults, preventing electrical shock hazards and damage to the equipment.
Q: How does the quality of the AC waveform affect the performance of a solar inverter?
The quality of the AC waveform directly impacts the performance of a solar inverter. A poor quality waveform can introduce harmonics and distortions, leading to reduced efficiency, increased heat generation, and decreased overall performance of the inverter. It can also cause issues with the functioning of other electrical equipment connected to the inverter. Therefore, ensuring a high-quality and clean AC waveform is crucial for optimal performance and longevity of a solar inverter.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords