• Casing Pipe of Grade K55 with API Standard System 1
  • Casing Pipe of Grade K55 with API Standard System 2
  • Casing Pipe of Grade K55 with API Standard System 3
Casing Pipe of Grade K55 with API Standard

Casing Pipe of Grade K55 with API Standard

Ref Price:
get latest price
Loading Port:
Qingdao
Payment Terms:
TT OR LC
Min Order Qty:
20 m.t.
Supply Capability:
2000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

1. Structure of Casing Pipe of Grade K55 Description



API 5CT Steel Pipe, K55 Oil/Petroleum Casing Pipe.

1) Grade: K55

2) Size: 4 1/2", 5", 5 1/2", 6 5/8", 7", 7 5/8", 9 5/8", 10 3/4", 13 3/8", 16", 18 5/8", 20"
3) Wall thickness: 6.35 - 12.70 mm
4) Thread type: STC, LTC, BTC
5) Length: R1,R2,R3
6) All our casings accord with API 5CT standard.



2. Main Features of Casing Pipe of Grade K55


1) Advanced test for quality 

2) MTC, COC provided 

3) Supervision is welcome


3. Casing Pipe of Grade K55 Images


Casing Pipe of Grade K55 with API Standard

Casing Pipe of Grade K55 with API Standard

Casing Pipe of Grade K55 with API Standard


4. Casing Pipe of Grade K55 Specification


Size   Destination

Weight   Destination

Outside   Diameter

Wall Thickness

Type of End   Finish

Grade

in

mm

in

mm

J55
  K55

L80

N80

C90
  T95

P110

4 1/2

9.50

4.500

114.3

0.205

5.21

PS

-

-

-

-

10.50

0.224

5.69

PSB

-

-

-

-

11.60

0.250

6.35

PSLB

PLB

PLB

PLB

PLB

13.50

0.290

7.37

-

PLB

PLB

PLB

PLB

15.10

0.337

9.56

-

-

-

-

PLB

5

11.50

5.00

127.00

0.220

5.59

PS

-

-

-

-

13.00

0.253

6.43

PSLB

-

-

-

-

15.00

0.296

7.52

PSLB

PLB

PLB

PLBE

PLB

18.00

0.362

9.19

-

PLB

PLB

PLBE

PLB

21.40

0.437

11.10

-

PLB

PLB

PLB

PLB

23.20

0.478

12.14

-



PLB


24.10

0.500

12.70

-



PLB


5 1/2

14.00

5.500

139.7

0.244

6.20

PS

-

-

-

-

15.50

0.275

6.98

PSLB

-

-

-

-

17.00

0.304

7.72

PSLB

PLB

PLB

PLBE

PLB

20.00

0.361

9.17

-

PLB

PLB

PLBE

PLB

23.00

0.415

10.54

-

PLB

PLB

PLBE

PLB

6 5/8

20.00

6.625

168.28

0.288

7.32

PSLB

-

-

-

-

24.00

0.352

8.94

PSLB

PLB

PLB

PLBE

PLB

28.00

0.417

10.59

-

PLB

PLB

PLBE

PLB

32.00

0.475

12.06

-

PLB

PLB

PLBE

PLB

7

17.00

7.00

177.80

0.231

5.87

-

-

-

-

-

20.00

0.272

6.91

PS

-

-

-

-

23.00

0.317

8.05

PSLB

PLB

PLB

PLBE

-

26.00

0.362

9.19

PSLB

PLB

PLB

PLBE

PLB

29.00

0.408

10.36

-

PLB

PLB

PLBE

PLB

32.00

0.453

11.51

-

PLB

PLB

PLBE

PLB

35.00

0.498

12.65

-

PLB

PLB

PLBE

PLB

38.00

0.540

13.72

-

PLB

PLB

PLBE

PLB

7 5/8

24.00

7.625

193.68

0.300

7.62

-

-

-

-

-

26.40

0.328

8.33

PSLB

PLB

PLB

PLBE

PLB

29.70

0.375

9.52

-

PLB

PLB

PLBE

PLB

33.70

0.430

10.92

-

PLB

PLB

PLBE

PLB

39.00

0.500

12.70

-

PLB

PLB

PLBE

PLB

42.80

0.562

14.27

-

PLB

PLB

PLB

PLB

45.30

0.595

15.11

-

PLB

PLB

PLB

PLB

47.10

0.625

15.88

-

PLB

PLB

PLB

PLB

8 5/8

24.00

8.625

219.08

0.264

6.71

PS

-

-

-

-

28.00

0.304

7.72

-

-

-

-

-

32.00

0.352

8.94

PSLB

-

-

-

-

36.00

0.400

10.16

PSLB

PLB

PLB

PLBE

PLB

40.00

0.450

11.43

-

PLB

PLB

PLBE

PLB

44.00

0.500

12.70

-

PLB

PLB

PLBE

PLB

49.00

0.557

14.15

-

PLB

PLB

PLBE

PLB

9 5/8

32.30

9.625

244.48

0.312

7.92

-

-

-

-

-

36.00

0.352

8.94

PSLB

-

-

-

-

40.00

0.395

10.03

PSLB

PLB

PLB

PLBE

-

43.50

0.435

11.05

-

PLB

PLB

PLBE

PLB

47.00

0.472

11.99

-

PLB

PLB

PLBE

PLB

53.50

0.545

13.84

-

PLB

PLB

PLBE

PLB

58.40

0.595

15.11

-

PLB

PLB

PLB

PLB

10 3/4

32.75

10.75

273.05

0.279

7.09

-

-

-

-

-

40.50

0.350

8.89

PSB

-

-

-

-

15.50

0.400

10.16

PSB

-

-

-

-

51.00

0.450

11.43

PSB

PSB

PSB

PSBE

PSB

55.50

0.495

12.57

-

PSB

PSB

PSBE

PSB

60.70

0.545

13.84

-

-

-

PSBE

PSB

65.70

0.595

15.11

-

-

-

PSB

PSB

13 3/8

48.00

13.375

339.73

0.330

8.38

-

-

-

-

-

54.50

0.380

9.65

PSB

-

-

-

-

61.00

0.430

10.92

PSB

-

-

-

-

68.00

0.480

12.19

PSB

PSB

PSB

PSB

PSB

72.00

0.514

13.06

-

PSB

PSB

PSB

PSB

16

65.00

16

406.40

0.375

9.53

-

-

-

-

-

75.00

0.438

11.13

PSB

-

-

-

-

84.00

0.495

12.57

PSB

-

-

-

-

109.00

0.656

16.66

P

P

P

-

P

18 5/8

87.50

18.625

473.08

0.435

11.05

PSB

-

-

-

-

20

94.00

20

508.00

0.438

11.13

PSLB

-

-

-

-

106.50

0.500

12.70

PSLB

-

-

-

-

133.00

0.635

16.13

PSLB

-

-

-

-



5. FAQ of Casing Pipe of Grade K55


We have organized several common questions for our clients,may help you sincerely:


①How about your company?

One of the leading manufacturers and suppliers specializing in steel pipe products in China, mainly offering four series steel pipes including welded steel pipe (ERW, SSAW, LSAW and square and rectangle pipe), seamless steel pipe, hot dipped galvanized steel pipe and steel pipe with 3 layer polythene coating. We can provide customers different specification standards e.g. ASTM A53, ASTM A106, BS1387, API 5L, API 5CT, ISO3183 and etc. Our scope of supplying covers from 1/2" to 48" for the outside diameter of welded pipes, and 1/8" to 20" for the seamless pipes. 


Other than steel pipes we are also capable of supplying a wide variety of pipeline accessories, steel pipe fittings; valves etc. consists of our one-stop sales. The integrated sales & service ensures customers with various demands an easier access for purchasing management.


②How to guarantee the quality of the products?

We have established the international advanced quality management system,every link from raw material to final product we have strict quality test;We resolutely put an end to unqualified products flowing into the market. At the same time, we will provide necessary follow-up service assurance.


③How long can we receive the product after purchase?

In the purchase of product within three working days, We will arrange the factory delivery as soon as possible.


Q:How are steel pipes threaded for connection?
Steel pipes are threaded for connection using a threading machine that cuts grooves into the pipe's outer surface. The machine rotates the pipe while a die cuts the threads, creating a spiral pattern. This threading allows pipes to be securely connected by screwing them together, providing a tight and leak-free joint.
Q:What are the different types of steel pipe fittings for chemical processing plants?
There are various types of steel pipe fittings commonly used in chemical processing plants, such as elbows, tees, reducers, couplings, flanges, and valves. These fittings are designed to connect and redirect the flow of fluids within the piping system, ensuring efficient and safe operation in chemical processing applications.
Q:What is the difference between internal threading and external threading of steel pipes?
Steel pipes can be threaded using two different methods: internal threading and external threading. The difference between these methods lies in where the threads are created. Internal threading involves cutting threads on the inside surface of the steel pipe. To do this, a tool or die is used to remove material from the inner diameter of the pipe, resulting in a helical groove. These threads are useful for connecting the pipe to other components, such as fittings or valves. On the other hand, external threading involves cutting threads on the outside surface of the steel pipe. This process requires the use of a threading die or a lathe to remove material from the outer diameter, leaving a helical groove. These external threads allow the pipe to be connected to other components or fittings with corresponding internal threads. The choice between internal and external threading depends on the specific application and project requirements. Internal threading is often preferred when the pipe needs to be connected to components with external threads, like fittings or valves. External threading, on the other hand, is typically used when the pipe needs to be connected to components with internal threads, or when it needs to be screwed into a threaded hole or coupling. In conclusion, the primary difference between internal and external threading of steel pipes is the location of the threads – internal threads are cut on the inside surface, while external threads are cut on the outside surface. The choice between these methods depends on the specific application and the type of connections needed.
Q:Can steel pipes be used for transporting gases?
Yes, steel pipes can be used for transporting gases. Steel pipes are known for their strength, durability, and resistance to corrosion, making them an ideal choice for transporting various gases over long distances. Additionally, steel pipes can handle high pressure and extreme temperatures, ensuring the safe and efficient transportation of gases.
Q:Can stainless steel pipes spray black paint?
Yes, after painting, I usually touch hands and paint off in 2 years or so
Q:What is the tensile strength of steel pipes?
The tensile strength of steel pipes can vary depending on the grade and type of steel used. However, in general, steel pipes have a high tensile strength. Typically, carbon steel pipes have a tensile strength range of 370 to 700 megapascals (MPa), while alloy steel pipes can have a tensile strength range of 770 to 1200 MPa. These high tensile strengths allow steel pipes to withstand high levels of pressure and stress, making them suitable for a wide range of applications such as in the construction, oil and gas, and automotive industries. It is important to note that the tensile strength of steel pipes can also be influenced by other factors such as the manufacturing process, heat treatment, and the presence of any defects or imperfections. Therefore, it is advisable to consult the specifications provided by the manufacturer or industry standards to determine the exact tensile strength of a specific steel pipe.
Q:Can steel pipes be used for aboveground applications?
Yes, steel pipes can be used for aboveground applications. They are commonly used in various aboveground structures such as buildings, bridges, and pipelines due to their strength, durability, and resistance to environmental conditions.
Q:How are steel pipes connected to other materials like concrete or plastic?
Steel pipes can be connected to other materials like concrete or plastic through various methods such as welding, flanges, threaded connections, or using specialized fittings. These connections ensure a secure and durable bond between the steel pipe and the other material, allowing for effective transfer of fluids or structural support.
Q:What is the impact toughness of steel pipes?
The ability of steel pipes to withstand sudden or high-velocity impacts without fracturing or breaking is referred to as their impact toughness. This property measures the material's resistance to cracking when subjected to dynamic loading conditions. The impact toughness of steel pipes is highly significant as it determines their capacity to endure accidental impacts or external forces during transportation, installation, and operation. To evaluate the impact toughness of steel pipes, standardized tests such as the Charpy V-notch test or the Izod test are commonly utilized. These tests involve striking a notched sample of the steel pipe with a pendulum or a falling weight and measuring the amount of energy absorbed by the material until it fractures. The impact toughness is then calculated based on this energy absorption. A high impact toughness is desirable in steel pipes as it signifies a greater ability to absorb energy and resist fracture, making them more resilient to sudden impacts or loading conditions. This characteristic is particularly crucial in applications where steel pipes are exposed to high-stress environments, such as in oil and gas pipelines, automotive components, or structural applications. Several factors can influence the impact toughness of steel pipes, including their chemical composition, heat treatment, and microstructure. For instance, alloying elements like manganese, chromium, and nickel can enhance the impact toughness by promoting the formation of fine-grained microstructures and preventing crack propagation. Similarly, appropriate heat treatment processes like quenching and tempering can optimize the material's microstructure and mechanical properties, thereby improving its impact toughness. In conclusion, the impact toughness of steel pipes is a vital property that determines their ability to withstand sudden or high-velocity impacts. It is evaluated through standardized tests and can be influenced by factors such as chemical composition, heat treatment, and microstructure. A high impact toughness is desirable in steel pipes to ensure their structural integrity and resistance to fracture when subjected to dynamic loading conditions.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Hot Searches

Related keywords