• Casing Pipe of Grade K55 with API Standard System 1
  • Casing Pipe of Grade K55 with API Standard System 2
  • Casing Pipe of Grade K55 with API Standard System 3
Casing Pipe of Grade K55 with API Standard

Casing Pipe of Grade K55 with API Standard

Ref Price:
get latest price
Loading Port:
Qingdao
Payment Terms:
TT OR LC
Min Order Qty:
20 m.t.
Supply Capability:
2000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

1. Structure of Casing Pipe of Grade K55 Description



API 5CT Steel Pipe, K55 Oil/Petroleum Casing Pipe.

1) Grade: K55

2) Size: 4 1/2", 5", 5 1/2", 6 5/8", 7", 7 5/8", 9 5/8", 10 3/4", 13 3/8", 16", 18 5/8", 20"
3) Wall thickness: 6.35 - 12.70 mm
4) Thread type: STC, LTC, BTC
5) Length: R1,R2,R3
6) All our casings accord with API 5CT standard.



2. Main Features of Casing Pipe of Grade K55


1) Advanced test for quality 

2) MTC, COC provided 

3) Supervision is welcome


3. Casing Pipe of Grade K55 Images


Casing Pipe of Grade K55 with API Standard

Casing Pipe of Grade K55 with API Standard

Casing Pipe of Grade K55 with API Standard


4. Casing Pipe of Grade K55 Specification


Size   Destination

Weight   Destination

Outside   Diameter

Wall Thickness

Type of End   Finish

Grade

in

mm

in

mm

J55
  K55

L80

N80

C90
  T95

P110

4 1/2

9.50

4.500

114.3

0.205

5.21

PS

-

-

-

-

10.50

0.224

5.69

PSB

-

-

-

-

11.60

0.250

6.35

PSLB

PLB

PLB

PLB

PLB

13.50

0.290

7.37

-

PLB

PLB

PLB

PLB

15.10

0.337

9.56

-

-

-

-

PLB

5

11.50

5.00

127.00

0.220

5.59

PS

-

-

-

-

13.00

0.253

6.43

PSLB

-

-

-

-

15.00

0.296

7.52

PSLB

PLB

PLB

PLBE

PLB

18.00

0.362

9.19

-

PLB

PLB

PLBE

PLB

21.40

0.437

11.10

-

PLB

PLB

PLB

PLB

23.20

0.478

12.14

-



PLB


24.10

0.500

12.70

-



PLB


5 1/2

14.00

5.500

139.7

0.244

6.20

PS

-

-

-

-

15.50

0.275

6.98

PSLB

-

-

-

-

17.00

0.304

7.72

PSLB

PLB

PLB

PLBE

PLB

20.00

0.361

9.17

-

PLB

PLB

PLBE

PLB

23.00

0.415

10.54

-

PLB

PLB

PLBE

PLB

6 5/8

20.00

6.625

168.28

0.288

7.32

PSLB

-

-

-

-

24.00

0.352

8.94

PSLB

PLB

PLB

PLBE

PLB

28.00

0.417

10.59

-

PLB

PLB

PLBE

PLB

32.00

0.475

12.06

-

PLB

PLB

PLBE

PLB

7

17.00

7.00

177.80

0.231

5.87

-

-

-

-

-

20.00

0.272

6.91

PS

-

-

-

-

23.00

0.317

8.05

PSLB

PLB

PLB

PLBE

-

26.00

0.362

9.19

PSLB

PLB

PLB

PLBE

PLB

29.00

0.408

10.36

-

PLB

PLB

PLBE

PLB

32.00

0.453

11.51

-

PLB

PLB

PLBE

PLB

35.00

0.498

12.65

-

PLB

PLB

PLBE

PLB

38.00

0.540

13.72

-

PLB

PLB

PLBE

PLB

7 5/8

24.00

7.625

193.68

0.300

7.62

-

-

-

-

-

26.40

0.328

8.33

PSLB

PLB

PLB

PLBE

PLB

29.70

0.375

9.52

-

PLB

PLB

PLBE

PLB

33.70

0.430

10.92

-

PLB

PLB

PLBE

PLB

39.00

0.500

12.70

-

PLB

PLB

PLBE

PLB

42.80

0.562

14.27

-

PLB

PLB

PLB

PLB

45.30

0.595

15.11

-

PLB

PLB

PLB

PLB

47.10

0.625

15.88

-

PLB

PLB

PLB

PLB

8 5/8

24.00

8.625

219.08

0.264

6.71

PS

-

-

-

-

28.00

0.304

7.72

-

-

-

-

-

32.00

0.352

8.94

PSLB

-

-

-

-

36.00

0.400

10.16

PSLB

PLB

PLB

PLBE

PLB

40.00

0.450

11.43

-

PLB

PLB

PLBE

PLB

44.00

0.500

12.70

-

PLB

PLB

PLBE

PLB

49.00

0.557

14.15

-

PLB

PLB

PLBE

PLB

9 5/8

32.30

9.625

244.48

0.312

7.92

-

-

-

-

-

36.00

0.352

8.94

PSLB

-

-

-

-

40.00

0.395

10.03

PSLB

PLB

PLB

PLBE

-

43.50

0.435

11.05

-

PLB

PLB

PLBE

PLB

47.00

0.472

11.99

-

PLB

PLB

PLBE

PLB

53.50

0.545

13.84

-

PLB

PLB

PLBE

PLB

58.40

0.595

15.11

-

PLB

PLB

PLB

PLB

10 3/4

32.75

10.75

273.05

0.279

7.09

-

-

-

-

-

40.50

0.350

8.89

PSB

-

-

-

-

15.50

0.400

10.16

PSB

-

-

-

-

51.00

0.450

11.43

PSB

PSB

PSB

PSBE

PSB

55.50

0.495

12.57

-

PSB

PSB

PSBE

PSB

60.70

0.545

13.84

-

-

-

PSBE

PSB

65.70

0.595

15.11

-

-

-

PSB

PSB

13 3/8

48.00

13.375

339.73

0.330

8.38

-

-

-

-

-

54.50

0.380

9.65

PSB

-

-

-

-

61.00

0.430

10.92

PSB

-

-

-

-

68.00

0.480

12.19

PSB

PSB

PSB

PSB

PSB

72.00

0.514

13.06

-

PSB

PSB

PSB

PSB

16

65.00

16

406.40

0.375

9.53

-

-

-

-

-

75.00

0.438

11.13

PSB

-

-

-

-

84.00

0.495

12.57

PSB

-

-

-

-

109.00

0.656

16.66

P

P

P

-

P

18 5/8

87.50

18.625

473.08

0.435

11.05

PSB

-

-

-

-

20

94.00

20

508.00

0.438

11.13

PSLB

-

-

-

-

106.50

0.500

12.70

PSLB

-

-

-

-

133.00

0.635

16.13

PSLB

-

-

-

-



5. FAQ of Casing Pipe of Grade K55


We have organized several common questions for our clients,may help you sincerely:


①How about your company?

One of the leading manufacturers and suppliers specializing in steel pipe products in China, mainly offering four series steel pipes including welded steel pipe (ERW, SSAW, LSAW and square and rectangle pipe), seamless steel pipe, hot dipped galvanized steel pipe and steel pipe with 3 layer polythene coating. We can provide customers different specification standards e.g. ASTM A53, ASTM A106, BS1387, API 5L, API 5CT, ISO3183 and etc. Our scope of supplying covers from 1/2" to 48" for the outside diameter of welded pipes, and 1/8" to 20" for the seamless pipes. 


Other than steel pipes we are also capable of supplying a wide variety of pipeline accessories, steel pipe fittings; valves etc. consists of our one-stop sales. The integrated sales & service ensures customers with various demands an easier access for purchasing management.


②How to guarantee the quality of the products?

We have established the international advanced quality management system,every link from raw material to final product we have strict quality test;We resolutely put an end to unqualified products flowing into the market. At the same time, we will provide necessary follow-up service assurance.


③How long can we receive the product after purchase?

In the purchase of product within three working days, We will arrange the factory delivery as soon as possible.


Q: How are steel pipes used in the manufacturing of shipbuilding and offshore structures?
Steel pipes are essential components in the manufacturing of shipbuilding and offshore structures. They are widely used due to their strength, durability, and resistance to corrosion, making them ideal for the harsh marine environment. In shipbuilding, steel pipes are used for various purposes. One of the main applications is in the construction of the hull, the framework that provides structural support to the ship. Steel pipes are used to form the keel and the frames, which help to maintain the shape and strength of the hull. These pipes are welded together to create a robust and rigid structure that can withstand the forces exerted on the ship during navigation. Moreover, steel pipes are used in the construction of various systems onboard the ship. For instance, they are utilized in the piping system for transporting fluids like fuel, water, and oil throughout the vessel. Steel pipes are also employed in the ventilation and air conditioning systems, ensuring proper airflow and temperature control within the ship. In offshore structures, such as oil rigs and platforms, steel pipes play a crucial role. These structures are typically subjected to extreme environmental conditions, including severe weather, high pressure, and corrosive saltwater. Steel pipes are used to fabricate the legs, risers, and other load-bearing components of offshore structures. These pipes provide the necessary strength and stability, allowing the structure to withstand the forces exerted by waves, wind, and drilling operations. Additionally, steel pipes are utilized in the construction of subsea pipelines. These pipelines are used to transport oil, gas, and other fluids from offshore drilling sites to onshore facilities. Steel pipes are preferred due to their high tensile strength and ability to withstand the high pressure and corrosive conditions found in subsea environments. Overall, steel pipes are indispensable in the manufacturing of shipbuilding and offshore structures. Their exceptional strength, durability, and corrosion resistance make them the preferred choice for constructing hulls, systems, and load-bearing components. Without steel pipes, the construction of ships and offshore structures would be significantly compromised in terms of safety, reliability, and longevity.
Q: Can steel pipes be used for steam applications?
Yes, steel pipes can be used for steam applications. Steel is a widely used material in steam systems due to its high strength, durability, and resistance to high temperatures and pressure. It is commonly used in industries such as power generation, refineries, and petrochemical plants for carrying and distributing steam. However, it is important to ensure that the steel pipes are properly designed, installed, and maintained to withstand the specific conditions and requirements of steam applications.
Q: What materials are used in scaffolding pipes?
Using 48.3 * 3.6mm steel pipe, the maximum thickness of the steel pipe shall not be less than 3.24mm (there should be no serious corrosion, bending, flattening or crack); the corrosion depth of the old steel pipe shall be in accordance with the construction fastener typeProvisions on the safety technical specification for steel pipe scaffold JGJ130-2011. Take three of the corroded steel tubes, and cut the samples at the most severe parts of the rust. The corrosion depth shall not exceed the prescribed valueUse。 In addition, the approach of the steel pipe should also be sampling retest, qualified before use.
Q: What are the factors affecting the cost of steel pipes?
The factors affecting the cost of steel pipes include the price of raw materials such as iron ore and coal, the cost of energy and transportation, market demand and supply dynamics, currency exchange rates, manufacturing and labor costs, and any additional taxes or tariffs imposed on steel imports. Other factors may include technological advancements, regulatory compliance, and the overall economic conditions of producing countries.
Q: How are steel pipes tested for leakage?
Steel pipes are tested for leakage using various methods, including hydrostatic testing, pneumatic testing, and ultrasonic testing. Hydrostatic testing involves filling the pipe with water or another liquid and subjecting it to high pressure to check for any leaks. Pneumatic testing, on the other hand, involves pressurizing the pipe with air or gas to detect any leakage. Ultrasonic testing utilizes sound waves to identify any defects or leaks in the pipe by measuring the time it takes for the sound waves to bounce back. These testing methods ensure that steel pipes meet the required standards and are free from any leakage.
Q: Can steel pipes be used for underground pressure pipelines?
Yes, steel pipes can be used for underground pressure pipelines. Steel pipes are known for their strength and durability, making them suitable for various applications, including underground pressure pipelines. They can withstand high pressure and are resistant to corrosion, making them a reliable choice for transporting fluids or gases underground. Additionally, steel pipes are available in different sizes and thicknesses, allowing for customization based on the specific requirements of the pipeline project. However, it is important to ensure proper coating or lining of the steel pipes to prevent corrosion caused by soil conditions or the transported substance. Regular maintenance and inspections are also necessary to ensure the integrity and longevity of the underground pressure pipelines made of steel pipes.
Q: What type of steel pipe for security windows?
General anti-theft window through the round tube is 3 cm square tube, 22.5 mm diameter round tube, also can use all square tube to do, if you want to median 304, the pipe is estimated more expensive, the market to do the price in 60 to 110 range. As for plastic steel, Anhui conch brand, the price of 180 this way. Aluminum alloy 110 to 230 specific look what material?!
Q: What is the difference between API 5L and ASTM A106 steel pipes?
Seamless carbon steel pipe is commonly specified under two widely used specifications: API 5L and ASTM A106. These specifications cover similar materials but have different criteria in terms of chemical composition, manufacturing processes, mechanical properties, and testing. API 5L, created by the American Petroleum Institute (API), is designed for line pipe used in oil and gas transportation. It applies to both seamless and welded steel pipes suitable for conveying gas, water, and oil in the natural gas and petroleum industries. API 5L outlines the minimum requirements for manufacturing two product specification levels (PSL 1 and PSL 2) of seamless and welded steel pipes, which have varying chemical composition and mechanical properties. In contrast, ASTM A106, developed by the American Society for Testing and Materials (ASTM), is specifically for seamless carbon steel pipe used in high-temperature service. It covers seamless carbon steel pipe with nominal wall thickness as specified in ANSI B36.10, ranging from NPS 1/8" to NPS 48". ASTM A106 provides guidelines for chemical composition, manufacturing processes, mechanical properties, and testing. A significant distinction between API 5L and ASTM A106 lies in the intended application of the pipe. API 5L is designed for the transmission of liquid and gas, while ASTM A106 is used in high-temperature service. Moreover, the chemical composition and mechanical properties of the steel may differ between the two specifications depending on the grade and type of steel being utilized. To summarize, API 5L and ASTM A106 are extensively used specifications for carbon steel pipe, but they exhibit notable differences in terms of their application, chemical composition, manufacturing processes, mechanical properties, and testing requirements. It is crucial to carefully consider these factors when selecting the appropriate steel pipe for a specific application.
Q: DN150 welded steel tubes one meter multiple
Calculated theoretical weight (Kg) per inch of welded steel pipe = (outside diameter wall thickness) * wall thickness * 0.02466DN150 welded pipe, "150" means nominal diameter of 150mm. Its outer diameter is 165mm.
Q: What is the difference between steel pipe and polyethylene pipe?
Steel pipe and polyethylene pipe are two different types of materials used for plumbing and construction purposes. The main difference between these two pipes lies in their composition and characteristics. Steel pipe is made from a combination of iron and carbon, which gives it its strength and durability. It is commonly used in applications where high pressure and heavy loads are expected, such as in industrial settings or for underground gas and oil pipelines. Steel pipe is known for its resistance to corrosion and its ability to withstand extreme temperatures. On the other hand, polyethylene pipe is a type of plastic pipe made from high-density polyethylene (HDPE) or low-density polyethylene (LDPE). It is lightweight, flexible, and easy to install, making it a popular choice for residential plumbing and irrigation systems. Polyethylene pipe is resistant to chemicals, UV rays, and abrasive materials, making it suitable for both above-ground and underground installations. Another significant difference between steel pipe and polyethylene pipe is their cost. Steel pipe generally tends to be more expensive due to the raw materials and manufacturing processes involved. Polyethylene pipe, on the other hand, is relatively affordable and cost-effective, especially for smaller-scale projects. In terms of maintenance, steel pipe requires periodic inspections and maintenance to prevent corrosion and ensure its longevity. Polyethylene pipe, on the other hand, is virtually maintenance-free due to its resistance to corrosion and chemical degradation. In summary, the main difference between steel pipe and polyethylene pipe lies in their composition, strength, durability, cost, and maintenance requirements. The choice between these two pipes depends on the specific needs of the project, taking into consideration factors such as pressure, load, budget, and environmental conditions.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords