• Aluminum Circle for Spinning Production Mode System 1
  • Aluminum Circle for Spinning Production Mode System 2
Aluminum Circle for Spinning Production Mode

Aluminum Circle for Spinning Production Mode

Ref Price:
get latest price
Loading Port:
Shanghai
Payment Terms:
TT OR LC
Min Order Qty:
2 m.t.
Supply Capability:
1500 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Specification

Grade:
3000 Series,5000 Series
Surface Treatment:
Mill Finish
Shape:
Round
Temper:
H48
Application:
Kitchen Use

1. Structure of CC Aluminium in Coil Form for making Aluminium Circle Description
    CC Aluminium in Coil Form for making Aluminium Circle is one semi-finished aluminium material. This coil can be     rolled down to aluminium coil,sheet,circle ect.  The alloy AA1050 is widly used in building, industry ect. Its weight is much lower than steel. So many customers choosed aluminium material instead of steel.

 

2. Feature of CC Aluminium in Coil Form for making Aluminium Circle

Surfact Quality :

 Be free from Oil Stain, Dent, Inclusion, Scratches, Stain, Oxide Dicoloration, Breaks, Corrosion, Roll Marks, Dirt Streaks and other defect which will interfere with use,

 

Mechenical Property:

Chemical Composite and Mechanical Property

 

 

3. Image of CC Aluminium in Coil Form for making Aluminium Circle and Packging

 

 

Aluminium Circle for Spinning Production Mode Using

Aluminium Circle for Spinning Production Mode Using

 

4. Specification of CC Aluminium in Coil Form for making Aluminium Circle

 

Aluminum Coil/Sheet

Main Specification

Alloy

AA1xxx (AA1050, AA1060, AA1070, AA1100 etc.)

AA3xxx (AA3003, AA3004, AA3005, AA3105 etc.)

AA5xxx, AA6XXX (AA5052,AA5083, AA5754, AA6061, AA6062 etc.)

AA8xxx(AA8011, AA8006 etc.)

Temper

H14,H16, H18, H22, H24, H26, H32,O/F, T4, T6, T651

Thickmess

0.01mm-100mm

Width

30mm-1700mm

Standard

GB/T 3880-2006/ASTM

Special specification is available on customer's requirement

 

5. FAQ

1) What is the delivery time?

Depends on actual order, around 20 to 35 days

2) What is the QC system?

We have QC staff of 20 persons and advanced equipment, each production is with MTC traced from Aluminium ingot lot.

3) What market do you mainly sell to?

Australia, America, Asia, Middle East, Western Europe, Africa etc.

 

Q: This question asks for a description of the characteristics that are inherent to pure aluminum.
<p>Pure aluminum is a lightweight, silvery-white metal known for its excellent malleability, ductility, and electrical conductivity. It has a density of 2.7 g/cm鲁, which is about one-third that of steel. It is non-magnetic and has a low melting point of 660掳C (1220掳F). Pure aluminum is also highly reflective, making it useful in mirrors and reflective coatings. It is a good thermal conductor and is resistant to corrosion due to the formation of a protective oxide layer on its surface. However, it is soft and lacks strength, which is why it is often alloyed with other elements to improve its mechanical properties.</p>
Q: Is it possible to construct vehicles using aluminum?
<p>Yes, aluminum can be used to make cars. It is known for its lightweight, high strength, and corrosion resistance, which are desirable properties in automotive manufacturing. Aluminum alloys are commonly used in car bodies, engines, and other components to reduce weight, improve fuel efficiency, and enhance performance. Additionally, its recyclability makes it an environmentally friendly choice for vehicle production.</p>
Q: Is it possible to utilize aluminum in the manufacturing of components for aerospace applications?
<p>Yes, aluminum is widely used in the aerospace industry for making various components due to its high strength-to-weight ratio, corrosion resistance, and ease of fabrication. It is commonly used in aircraft structures, wings, fuselage, and engines. Aluminum alloys are preferred for their excellent fatigue resistance and ability to withstand high temperatures and stresses encountered in flight.</p>
Q: What limitations or precautions should be considered when using aluminum foil for cooking purposes?
<p>Yes, there are restrictions on using aluminum foil for cooking. Avoid using it with acidic foods as it can react and release aluminum into the food. Also, refrain from using it at high temperatures, as it can melt and produce harmful fumes. Do not wrap food in aluminum foil and cook it in a microwave, as it can cause sparks and fires. Always ensure the foil is clean and free of any chemical residues from manufacturing.</p>
Q: Explain how the inclusion of copper impacts the characteristics of aluminum alloys.
<p>The addition of copper to aluminum alloys significantly enhances their strength and hardness. Copper is one of the most effective alloying elements for aluminum, leading to the formation of a series of age-hardenable alloys known as the 2xxx series. These alloys, such as 2024, are characterized by their high strength-to-weight ratio and are often used in aerospace applications, structural components, and transportation equipment. The copper atoms in the aluminum matrix form precipitates that strengthen the alloy through a process called precipitation hardening. However, the addition of copper also reduces the alloy's ductility and corrosion resistance, necessitating careful control of the copper content and heat treatment processes to optimize the alloy's properties for specific applications.</p>
Q: Explain the distinctions between aluminum alloys and pure aluminum in a few sentences.
<p>Aluminum alloys and pure aluminum differ in composition and properties. Pure aluminum is soft and has low strength, making it less suitable for structural applications. In contrast, aluminum alloys are made by combining aluminum with other elements like copper, magnesium, or silicon to enhance strength, durability, and resistance to corrosion. These alloys maintain the lightweight nature of aluminum while offering improved mechanical properties, making them ideal for various industries, including aerospace, automotive, and construction.</p>
Q: This question asks about the amount of energy needed to produce aluminum, including the process and factors that influence energy consumption.
<p>Producing aluminum requires a significant amount of energy, primarily due to the electrolytic process used to extract it from its ore, bauxite. The Hall-H茅roult process, the most common method, consumes about 15,000 to 16,000 kilowatt-hours of electricity per ton of aluminum produced. This high energy demand is largely due to the strong chemical bonds in aluminum oxide, which must be broken to release the aluminum. Energy consumption can vary based on the efficiency of the smelting process, the quality of the bauxite, and the energy source used, with renewable energy potentially reducing the carbon footprint but not necessarily the total energy input.</p>
Q: This question asks for the specific temperature at which aluminum changes from a solid to a liquid state.
<p>The melting point of aluminum is approximately 660.32 degrees Celsius (1220.58 degrees Fahrenheit). This is the temperature at which solid aluminum begins to melt and transform into a liquid state.</p>
Q: Describe the steps involved in recycling aluminum foil, including collection, sorting, processing, and manufacturing.
<p>The process of recycling aluminum foil begins with collection, where used foil is gathered from households and businesses. It is then sorted to separate aluminum from other materials. The aluminum foil is shredded into small pieces and cleaned to remove any contaminants. This shredded material is melted in a furnace at high temperatures, turning it into molten aluminum. The molten aluminum is then cooled and rolled into sheets or ingots. Finally, these are used to manufacture new aluminum products, such as new foil, cans, or other items. This recycling process conserves resources, reduces energy consumption, and minimizes waste in landfills.</p>
Q: This question asks about the potential health hazards associated with exposure to aluminum in a work environment.
<p>Working with aluminum can pose certain health risks, primarily due to inhalation of aluminum dust or fumes. Chronic exposure may lead to respiratory issues such as aluminum lung disease, characterized by shortness of breath and cough. Additionally, aluminum has been linked to neurological disorders, including cognitive dysfunction and memory loss. There's also evidence suggesting a potential connection to Alzheimer's disease, though this is not conclusively proven. Skin contact with aluminum can cause irritation or allergic reactions in some individuals. It's important for workers to use proper protective equipment and follow safety guidelines to minimize these risks.</p>

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords