• Tigo Solar Inverter 1600 Watt Off-Grid Hybrid Solar Power Inverter 1000 2000 3000 4000 5000VA System 1
  • Tigo Solar Inverter 1600 Watt Off-Grid Hybrid Solar Power Inverter 1000 2000 3000 4000 5000VA System 2
Tigo Solar Inverter 1600 Watt Off-Grid Hybrid Solar Power Inverter 1000 2000 3000 4000 5000VA

Tigo Solar Inverter 1600 Watt Off-Grid Hybrid Solar Power Inverter 1000 2000 3000 4000 5000VA

Ref Price:
get latest price
Loading Port:
Shanghai
Payment Terms:
TT OR LC
Min Order Qty:
10000 watt
Supply Capability:
100000 watt/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Product Description

 

What is Solar inverter? 

Solar pv inverters is an electronic system that operates the photovoltaic(PV) modules in a manner that allows the modules to produce all the power they are capable of. The solar mate charge controller is a microprocessor-based system designed to implement the MPPT. It can increase charge current up to 30% or more compared to traditional charge controllers.

 

Features

 

. Pure sine wave inverter
. Selectable input voltage range for home appliances and personal computers
. Selectable charging current based on applications
. Configurable AC/Solar input priority via LCD setting
. Compatible to mains voltage or generator power
. Parallel operation with up to 6 units only available for PV1800 4KVA/5KVA
. Auto restart while AC is recovering
. Overload and short circuit protection
. Smart battery charger design for optimized battery performance
. Cold start function

 

Specification

     

RATED   POWER

1000VA /   800W

2000VA/
 
1600W

3000VA /   2400W

4000VA /   3200W

5000VA /   4000W

INPUT

Voltage

230   VAC 

Selectable   Voltage Range

170-280   VAC (For Personal Computers) ; 90-280 VAC (For Home Appliances)

Frequency   Range

50 Hz/60   Hz (Auto sensing)

OUTPUT

AC   Voltage Regulation 
 
(Batt.   Mode)

230 VAC   ± 5%

Surge   Power

2000VA

4000VA

6000VA

8000VA

10000VA

Efficiency   (Peak)

90%

93%

Transfer   Time

10 ms   (For Personal Computers) ; 20 ms (For Home Appliances)

Waveform

Pure   sine wave

BATTERY

Battery   Voltage

12 VDC

24 VDC

48 VDC

Floating   Charge Voltage

13.5 VDC

27 VDC

54 VDC

Overcharge   Protection

15 VDC

30 VDC

60 VDC

Maximum   Charge Current

10 A or   20 A

20 A or   30 A

60 A

SOLAR   CHARGER (OPTION)

Charging   Current

50 A

Maximum   PV Array Open Circuit Voltage

30 VDC

60 VDC

105 VDC

Standby   power Consumption

1 W

2 W

2 W

PHYSICAL

Dimension,   D x W x H (mm)

95 x 240   x 316

100 x   272 x 355

125 x   297.5 x 468

Net   Weight (kgs)

5.0

6.4

6.9

9.8

9.8

OPERATING   ENVIRONMENT

Humidity

5% to   95% Relative Humidity(Non-condensing)

Operating   Temperature

0°C -   55°C

Storage   Temperature

-15°C -   60°C












 

Images

 

1600 watt Off-Grid Hybrid Solar Power Inverter 1000 2000 3000 4000 5000VA

1600 watt Off-Grid Hybrid Solar Power Inverter 1000 2000 3000 4000 5000VA




Packaging & Shipping

What is the packing?

1.Package: Carton Box for packaging, or Wooden Box advised  for Samples to protect in transportations. Package designed by Clients is welcomed.

2.Shipping: DHL,FEDEX,UPS,EMS,AirWay and By Sea. 

3.Payment: T/T( telegraphic transfer (T/T) and Western Union 

4.Welcome to your Sample Order to test First.

   

FAQ

 

Q1: How to choose a right inverter?

A1:Tell us your demand, then our sales will recommend a suitable inverter to you.

Q2: What's the different between inverter and solar inverter?

A2:  Inverter is only accept AC input, but solar inverter not only accept AC input but also can connect with solar panel to accept PV input, it more save power.  

Q3: How about the delivery time?

A3:  7 days for sample; 25 days for bulk order.

 

 


Q: How does the input frequency range affect the performance of a solar inverter?
The input frequency range directly affects the performance of a solar inverter. The inverter is designed to convert the variable direct current (DC) generated by the solar panels into stable alternating current (AC) that can be used by household appliances or fed into the grid. If the input frequency deviates from the specified range, it can lead to inefficient or unstable operation of the inverter. A wider input frequency range allows the inverter to handle fluctuations in the solar power generation, ensuring optimal performance and compatibility with different grid conditions.
Q: Can a solar inverter be used with batteries for energy storage?
Yes, a solar inverter can be used with batteries for energy storage. In fact, this is a common practice in solar power systems, where excess energy generated by the solar panels is stored in batteries for later use when the sun is not shining. The solar inverter plays a crucial role in converting DC power from the batteries into usable AC power for electrical appliances.
Q: What is the role of a solar inverter in a solar power system?
The role of a solar inverter in a solar power system is to convert the direct current (DC) electricity generated by the solar panels into alternating current (AC) electricity that can be used to power appliances and devices in homes or businesses. It also regulates and optimizes the flow of electricity to ensure maximum efficiency and safety in the solar power system.
Q: How long does a solar inverter last?
The lifespan of a solar inverter typically ranges from 10 to 20 years. However, with regular maintenance and proper care, some inverters have been known to last even longer.
Q: What is the role of a communication interface in a solar inverter?
The role of a communication interface in a solar inverter is to allow for seamless communication between the inverter and other devices or systems, such as a solar monitoring system or a smart grid. It enables the inverter to transmit important data, such as energy production, performance metrics, and fault notifications, to the connected devices or systems. Additionally, it allows for remote monitoring and control of the inverter, enabling users to monitor and optimize the performance of their solar power system.
Q: What is the role of a voltage regulator in a solar inverter?
The role of a voltage regulator in a solar inverter is to maintain a consistent and stable output voltage despite fluctuations in the input voltage from the solar panels. It ensures that the electricity generated by the solar panels is converted and delivered to the connected devices or grid at the required voltage level, preventing any damage to the devices and optimizing the overall efficiency of the solar power system.
Q: How does a solar inverter handle electromagnetic interference?
A solar inverter handles electromagnetic interference by utilizing filters and shielding techniques to minimize the impact of external electromagnetic disturbances. These measures help ensure that the inverter operates efficiently and reliably, without any significant disruption caused by electromagnetic interference.
Q: How does the maximum AC current rating affect the performance of a solar inverter?
The maximum AC current rating of a solar inverter directly impacts its performance. If the inverter has a higher maximum AC current rating, it can handle a larger amount of current flowing through it. This means it can support a higher capacity of solar panels and generate more power. On the other hand, if the inverter has a lower maximum AC current rating, it may not be able to handle high currents and can lead to inefficiencies or even system failures. Therefore, selecting an inverter with an appropriate maximum AC current rating is crucial for ensuring optimal performance and reliability of the solar power system.
Q: How does a solar inverter handle reactive power injection into the grid?
A solar inverter handles reactive power injection into the grid by utilizing power factor correction techniques. It actively monitors the grid's voltage and adjusts the reactive power output to maintain a desired power factor. This ensures efficient energy transfer and minimizes any negative impacts on the grid's stability and power quality.
Q: Can a solar inverter be used with a wind turbine?
Yes, a solar inverter can be used with a wind turbine. Both solar panels and wind turbines generate DC (direct current) electricity, which needs to be converted to AC (alternating current) to be used in most household appliances and the electrical grid. A solar inverter is designed to convert DC electricity from solar panels into AC electricity, and it can also be used to convert the DC electricity generated by a wind turbine into AC electricity. However, it is important to note that wind turbines usually generate higher voltage and fluctuating currents compared to solar panels, so the inverter used with a wind turbine may need to be specifically designed to handle these variations. Additionally, wind turbines often have their own specialized inverters that are optimized for their unique electrical characteristics.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords