• 100 Kw Grid Connected Solar Inverter 1500W System 1
  • 100 Kw Grid Connected Solar Inverter 1500W System 2
  • 100 Kw Grid Connected Solar Inverter 1500W System 3
100 Kw Grid Connected Solar Inverter 1500W

100 Kw Grid Connected Solar Inverter 1500W

Ref Price:
get latest price
Loading Port:
Shenzhen
Payment Terms:
TT or L/C
Min Order Qty:
1 pc
Supply Capability:
3000 sets Per Month pc/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

 

Introduction of Grid Connected Solar Inverter 1500W

 

CNBM International Corporation (CNBM International) is the most important trading platform of CNBM Group

Corporation, a state-owned company under the direct supervision of State-owned Assets Supervision and Administration

Commission of the State Council. The Grid Connected Solar Inverter we can offer is single-phase

1.5kw-5kw 1&2 MPPT; three-phase 10kw to 20kw 2MPPT inverters. Good quality and good services.

 

Advantages of Grid Connected Solar Inverter 1500W

Maximum efficiency of 97.5% and wide input voltage range
Integrated DC switch-disconnected
MTL-String
Sound control
Bluetooth/RF technology /Wi-Fi
Transformerless GT topology
5 years warranty (10 years as optional)

 

Datasheet of Grid Connected Solar Inverter 1500W

Model

CNBM-1500-US

CNBM-2000-US

CNBM-3000-US

Input data

 

Max. DC power

1800W

2300W

3200W

Max. DC voltage

450V

500V

500V

Start voltage

150V

150V

150V

PV voltage range

100V-450V

100V-500V

100V-500V

Number of MPP trackers/strings per MPP tracker

1/1

1/2

1/2

Max. input current of the MPP tracker

12A

14A

17A

Output data

 

Nominal AC output power

1500W@208Vac 1650W@240&277Vac

1800W@208Vac 2000W@240&277Vac

2500W@208Vac 2800W@240&277Vac

Max. output current

8A/7.8A/6.8A

9.7A/9.4A/8.2A

15A/14.2A/12.3A

AC nominal voltage; range

Default:240V single phase optional:208,240or277 single phase 183-228@208V 211-264V@240V 244-305@277V

AC grid frequency; range

60Hz;59.3-60.5Hz

60Hz;59.3-60.5Hz

60Hz;59.3-60.5Hz

Phase shift (cosφ)

1

1

1

THDI

<3%

<3%

<3%

AC connection

Single phase

Single phase

Single phase

Efficiency

 

Max. efficiency

97%

97%

97%

CEC efficiency

96%

96.50%

96.50%

MPPT efficiency

99.50%

99.50%

99.50%

Protection devices

 

Output overvoltage protection-varistor

yes

yes

yes

Ground fault monitoring

yes

yes

yes

Grid monitoring

yes

yes

yes

General Data

 

Dimensions (W / H / D) in mm

360/465/165

360/465/165

360/465/165

Weight

14.6KG

15.1KG

15.9KG

Operating temperature range

-25...+60°C

-25...+60°

-25...+60°

Altitude

Up to 2000m(6560ft) without power derating

Consumption: operating(standby) / night

<5W / < 0.5 W

<5W / < 0.5 W

<5 W / < 0.5 W

Topology

Transformerless

Cooling concept

Natural

Natural

Natural

Enclosure

Type 3R

Type 3R

Type 3R

Features

 

DC connection:

Screw terminal

Screw terminal

Screw terminal

AC connection:

Screw terminal

Screw terminal

Screw terminal

display

LCD

LCD

LCD

Interfaces: RS485/RS232/Bluetooth/RF/Zigbee

yes/yes/opt/opt/opt

Warranty: 5 years/ 10 years / 15 years

yes /opt

yes /opt

yes /opt

Certificates and approvals

UL1741,UL1998 IEEE 1547, CSA C22.2 No.107.1-1,FCC Part15(Class A&B)

 

Picture 1: Factory of Grid Connected Solar Inverter 1500W factory

 

Grid Connected Solar Inverter 1500W

 

Picture 2: Package of Grid Connected Solar Inverter 1500W

Grid Connected Solar Inverter 1500W

 

Q: How does a solar inverter handle voltage and frequency variations caused by switching operations?
A solar inverter handles voltage and frequency variations caused by switching operations through the use of advanced control algorithms and circuitry. It continuously monitors the input voltage and frequency from the solar panels and adjusts its own output voltage and frequency accordingly. This ensures that the power generated by the solar panels is efficiently converted into usable AC power that matches the grid requirements. The inverter's voltage and frequency control mechanisms help maintain a stable and consistent power supply, even in the presence of switching operations or fluctuations in the solar panel output.
Q: Can a solar inverter be used with battery storage?
Yes, a solar inverter can be used with battery storage. In fact, it is commonly used in solar energy systems to convert the direct current (DC) power generated by solar panels into alternating current (AC) power that can be used by household appliances or stored in batteries for later use. The solar inverter plays a crucial role in managing the flow of electricity between the solar panels, batteries, and the electrical grid, ensuring efficient energy utilization and storage.
Q: Can a solar inverter convert DC power to AC power during a power outage?
No, a solar inverter cannot convert DC power to AC power during a power outage. During a power outage, the solar inverter relies on the grid to function, and without grid power, it cannot convert DC power from the solar panels into usable AC power.
Q: What is the maximum operating altitude for a solar inverter?
The maximum operating altitude for a solar inverter typically varies depending on the specific model and manufacturer. However, on average, most solar inverters can operate effectively at altitudes up to 4,000 meters (13,123 feet) above sea level. It is important to consult the manufacturer's specifications or user manual for the precise altitude limitations of a particular solar inverter.
Q: Can a solar inverter be used with a solar-powered security system?
Yes, a solar inverter can be used with a solar-powered security system. A solar inverter is essential for converting the direct current (DC) generated by solar panels into alternating current (AC) that can be used to power electrical devices, including security systems. By using a solar inverter, a solar-powered security system can efficiently utilize solar energy and ensure uninterrupted operation.
Q: How does a solar inverter handle fluctuations in solar panel output due to temperature changes?
A solar inverter handles fluctuations in solar panel output due to temperature changes by employing a maximum power point tracking (MPPT) algorithm. This algorithm continuously monitors the output of the solar panels and adjusts the operating conditions of the inverter to extract the maximum power available. As temperature changes, the MPPT algorithm adapts the inverter's parameters to optimize the energy conversion process and ensure the highest possible efficiency. By dynamically adjusting the voltage and current levels, a solar inverter effectively mitigates the impact of temperature fluctuations on the solar panel's output.
Q: Photovoltaic grid-connected inverter problem
Hello, the definition of the zero line is not caused by the transformer three-phase electric tail connection? I now do not understand why there is no isolation transformer AC output marked is N (zero line), and it is not the transformer three-phase power of the tail connection leads to, this is the zero line? The The
Q: Can a solar inverter be used with solar-powered electric vehicle charging stations?
Yes, a solar inverter can be used with solar-powered electric vehicle charging stations. The solar inverter is responsible for converting the direct current (DC) generated by solar panels into alternating current (AC) that can be used to charge electric vehicles. By integrating a solar inverter into the charging station, the solar energy can be efficiently harnessed and utilized to power the EV charging process.
Q: Can a solar inverter be used for both grid-tied and off-grid systems?
Yes, a solar inverter can be used for both grid-tied and off-grid systems. However, it is important to note that different types of inverters are designed specifically for each system. Grid-tied inverters are used to convert the DC power generated by solar panels into AC power to feed into the grid, while off-grid inverters are designed to convert DC power from solar panels into AC power for use in standalone systems. So, while the same physical inverter may not be suitable for both applications, there are inverters available for each system type.
Q: How does a solar inverter handle voltage stability in the grid?
A solar inverter handles voltage stability in the grid by continuously monitoring the voltage levels and adjusting its output accordingly. It maintains a stable voltage by regulating the power output from the solar panels and injecting or absorbing reactive power as needed. This helps to stabilize the grid voltage and prevent fluctuations that can disrupt the operation of electrical devices and appliances connected to the grid.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords