Third Generation Solar Cells - Mono Solar Cell 125mm x 125mm x 0.5mm
- Loading Port:
- China main port
- Payment Terms:
- TT or LC
- Min Order Qty:
- 40000 watt
- Supply Capability:
- 100000 watt/month
OKorder Service Pledge
OKorder Financial Service
You Might Also Like
Details Of Mono Solar Cell 125mm
Specifications Of Mono Solar Cell 125mm
1.Mechanical data and design
Format | 125 mm × 125 mm ± 0.5 mm |
Thickness | 210 μm ± 40 μm |
Front(-) | 1.6 mm bus bars (silver),blue anti-reflection coating (silicon nitride) |
Back (+) | 2.5 mm wide soldering pads (silver) back surface field (aluminium) |
2.Temperature Coefficient of Cells
Voc. Temp . coef.%/K | -0.35%/K |
Isc . Temp . coef.%/K | +0.024%/K |
Pm. Temp. coef.%/K | -0.47%/K |
3.Electrical Characteristic
Efficiency(%) | Pmpp (W) | Umpp (V) | Impp (A) | Uoc (V) | Isc (A) | FF (%) |
18.35 | 2.841 | 0.532 | 5.342 | 0.631 | 5.67 | 79.41% |
18.20 | 2.817 | 0.53 | 5.319 | 0.631 | 5.64 | 79.16% |
18.05 | 2.794 | 0.527 | 5.301 | 0.63 | 5.63 | 78.77% |
17.90 | 2.771 | 0.527 | 5.259 | 0.629 | 5.62 | 78.39% |
17.75 | 2.748 | 0.526 | 5.224 | 0.629 | 5.61 | 77.88% |
17.60 | 2.725 | 0.524 | 5.201 | 0.629 | 5.59 | 77.50% |
17.45 | 2.702 | 0.52 | 5.196 | 0.629 | 5.586 | 76.90% |
17.30 | 2.678 | 0.516 | 5.183 | 0.626 | 5.577 | 76.71% |
17.15 | 2.655 | 0.513 | 5.175 | 0.623 | 5.565 | 76.58% |
17.00 | 2.632 | 0.51 | 5.161 | 0.622 | 5.559 | 76.12% |
16.75 | 2.593 | 0.508 | 5.103 | 0.615 | 5.477 | 76.98% |
16.50 | 2.555 | 0.506 | 5.047 | 0.608 | 5.396 | 77.88% |
4.Intensity Dependence
Advantage Of Mono Solar Cell 125mm
1: high quality cell, Level A cell (16.50%—18.35%)
2: Dimensione:125*125mm Diagonal:150mm / 165mm
Dimensione:156*156mm Diagonal:200mm
3: Qualified certification: TUV,CE certification.
4: Warranty: five years for whole unit
Usage/Application Of Mono Solar Cell 125mm
Packaging & Delivery Of Mono Solar Cell 125mm | |
Packaging Detai | Packaging Detail:Export Carton and Pallet or under customer request. |
Delivery Detail:10-20days |
Converting the sun’s radiation directly into electricity is done by solar cells. These cells are made of semiconducting materials similar to those used in computer chips. When sunlight is absorbed by these materials, the solar energy knocks electrons loose from their atoms, allowing the electrons to flow through the material to produce electricity. This process of converting light (photons) to electricity (voltage) is called the photovoltaic effect.
When photons are absorbed by matter in the solar cell, their energy excites electrons higher energy states where the electrons can move more freely. The perhaps most well-known example of this is the photoelectric effect, where photons give electrons in a metal enough energy to escape the surface. In an ordinary material, if the electrons are not given enough energy to escape, they would soon relax back to their ground states. In a solar cell however, the way it is put together prevents this from happening. The electrons are instead forced to one side of the solar cell, where the build-up of negative charge makes a current flow through an external circuit. The current ends up at the other side (or terminal) of the solar cell, where the electrons once again enter the ground state, as they have lost energy in the external circuit.
Solar cells, which were originally developed for space applications in the 1950s, are used in consumer products (such as calculators or watches), mounted on roofs of houses or assembled into large power stations. Today, the majority of photovoltaic modules are used for grid-connected power generation, but a smaller market for off-grid power is growing for remote areas and developing countries.
Given the enormous potential of solar energy, photovoltaics may well become a major source of clean electricity in the future. However, for this to happen, the electricity generation costs for PV systems need to be reduced and the efficiency of converting sunlight into electricity needs to increase. To achieve this, the Commission supports photovoltaics development since many years by funding research projects and facilitating cooperation between stakeholders.
- Q: How do solar cells perform in coastal environments?
- Solar cells perform well in coastal environments as they are not significantly affected by the presence of saltwater or the salty air. However, the performance can be slightly affected by the increased humidity and the potential for corrosion. Regular maintenance and cleaning can help ensure optimal performance in such environments.
- Q: What is the impact of dust storms on solar cell efficiency?
- Dust storms have a significant negative impact on solar cell efficiency. The accumulation of dust on the surface of solar panels reduces the amount of sunlight that can reach the cells, leading to a decrease in power generation. The dust particles block and scatter sunlight, reducing the overall efficiency of converting sunlight into electricity. Regular cleaning and maintenance of solar panels are necessary to mitigate the adverse effects of dust storms and ensure optimal performance.
- Q: The working principle of solar cells includes the three processes
- In the solar cell pn junction on both sides of the lead-out electrode, and connected to the load, then in the external circuit that is generated by the photogenerated current to obtain power output, so that solar cells put solar (or other light) directly into electrical energy
- Q: Can solar cells be used for powering shopping malls?
- Yes, solar cells can be used for powering shopping malls. Solar panels can be installed on the roofs or parking lots of shopping malls to generate electricity from the sun. This renewable energy source can help reduce the mall's reliance on traditional grid power and lower their carbon footprint. Additionally, the excess energy produced during off-peak hours can be stored or sold back to the grid, making solar cells a viable option for powering shopping malls.
- Q: How do solar cells perform in high humidity environments?
- Solar cells can still perform well in high humidity environments. However, excessive moisture in the air can potentially reduce their overall efficiency.
- Q: How does the solar cell work properly?
- It has to follow certain scientific steps to make it work properly.
- Q: What is the right way to operate a solar cell?
- It is difficult to operate the solar cell because it is high technology related.
- Q: How are solar cells installed on rooftops?
- Solar cells are typically installed on rooftops by first assessing the suitability of the roof for solar panel installation. Once determined, the installation process involves positioning and securing racking or mounting systems on the roof surface. Then, solar panels are mounted onto the racking, connected to one another, and wired to an inverter. Finally, the inverter is connected to the electrical system of the building, allowing the generated solar power to be used.
- Q: Can solar cells be used for powering drones?
- Yes, solar cells can be used for powering drones. Solar-powered drones utilize photovoltaic cells to convert sunlight into electricity, which can then be used to power the drone's motor and other systems. This renewable energy source allows for longer flight times and reduced reliance on traditional fuel sources.
- Q: How much land is required to install solar cells?
- The amount of land required to install solar cells depends on various factors such as the capacity of the solar system, efficiency of the solar panels, and the power generation goals. On average, it is estimated that a 1 MW solar power plant requires about 4-5 acres of land. However, with advancements in solar technology, the land requirements are decreasing as solar panels become more efficient and produce more power per square foot.
1. Manufacturer Overview
Location | SanShui City, Guang Dong, China. |
Year Established | 2009 |
Annual Output Value | Above 10 billion RMB |
Main Markets | Mid East;Western Europe;North America;Southeast Asia |
Company Certifications | TUV ISO9001;SGS |
2. Manufacturer Certificates
a) Certification Name | |
Range | |
Reference | |
Validity Period |
3. Manufacturer Capability
a) Trade Capacity | |
Nearest Port | Zhuhai, Foshan |
Export Percentage | 0.4 |
No.of Employees in Trade Department | about 600 |
Language Spoken: | English;Chinese; |
b) Factory Information | |
Factory Size: | 66666.7m2 |
No. of Production Lines | 12 |
Contract Manufacturing | OEM Service Offered;Design Service Offered |
Product Price Range | USD 0.3-0.45/Wp |
Send your message to us
Third Generation Solar Cells - Mono Solar Cell 125mm x 125mm x 0.5mm
- Loading Port:
- China main port
- Payment Terms:
- TT or LC
- Min Order Qty:
- 40000 watt
- Supply Capability:
- 100000 watt/month
OKorder Service Pledge
OKorder Financial Service
Similar products
Hot products
Hot Searches
Related keywords