• STAINLESS STEEL BUTT WELDED FITTING A234 WPB ASTM B16.9 System 1
  • STAINLESS STEEL BUTT WELDED FITTING A234 WPB ASTM B16.9 System 2
  • STAINLESS STEEL BUTT WELDED FITTING A234 WPB ASTM B16.9 System 3
  • STAINLESS STEEL BUTT WELDED FITTING A234 WPB ASTM B16.9 System 4
  • STAINLESS STEEL BUTT WELDED FITTING A234 WPB ASTM B16.9 System 5
STAINLESS STEEL BUTT WELDED FITTING A234 WPB ASTM B16.9

STAINLESS STEEL BUTT WELDED FITTING A234 WPB ASTM B16.9

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
1 pc
Supply Capability:
10000 pc/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Package Of Stainless Steel Butt-Welded Fitting:

PACKED IN PLYWOOD CASES OR PALLETS

 

Painting Of Stainless Steel Butt-Welded Fitting:

ANTI-RUST OIL

 

Marking Of Stainless Steel Butt-Welded Fitting:

REFER TO MARKING DOCUMENT or AS PER CUSTOMER REQUEST

 

Shipping Marks Of Stainless Steel Butt-Welded Fitting:

EACH WOODEN BOX TWO PLASTIC SHIPPING MARKS

 


Specification Of Stainless Steel Butt-Welded Fitting:

Stainless Steel 90Deg LR Elbow, Tee, Reducer and Cap

Size : 1/2"-48"

Wall Thickness.: SCH10-SCH160, SGP , XS, XXS, DIN ,STD

NameStainless Steel Butt-Welded Fitting
Size1/2" - 48"
ANGLE45D 90 D 180D
Wall thicknessSch5-Sch160 XXS,STD,XS, SGP
StandardASME  B16.9, GOST 17375-2001, DIN2605 and JIS B2311, EN10253-1 etc.
We can also produce according to drawing and standards provided by customers.
Material304, 304L, 316, 316L, 304/304L, 316/316L, EN1.4301, EN1.4404 etc.
PackagingWooden Cases, wooden pallet , or carton box , or nylog bag and then in wooden cases
Surface TreatmentAnti-rust Oil
Delivery Time20-30 days, after received advance payment.
Quality100% Heat Treatment, No Welding repair
Others1.Special design available according to your drawing.
2.anti-corrosion and high-temperature resistant with black painting
3. All the production process are made under the ISO9001:2000 strictly.
4. A conformity rate of ex-factory inspection of products.
5. we have export right , offering FOB , CNF CIF price

 

STANDARD & MATERIAL GRADE


 

STANDARD Of Carbon Steel Butt-Welded Fitting

StandardWall ThicknessType
American StandardASME B16.9S5S ~ XXS45D, 90D, 180D ELBOW, TEE, REDUCER, CAP, STUB END
ASME B16.11
ASME B16.2890D SR ELBOW
Japanese StandardJIS B2311SGP ~ LG

 

MATERIAL Of Stainless Steel Flange

Stainless Steel
Material StandardMaterial Grade
ASTMASTM A182F304 / F304 L
ASTM A182F316/ F316L
ASTM A182F310, F321
ASTM A182F321
DIN ENDIN EN 10222-5EN 1.4301
DIN EN 10222-5EN 1.4404
JISJIS G3214SUS F304
JIS G3214SUS F304L
JIS G3214SUS F316
JIS G3214SUS F316L

Q: Can steel pipes be used for sewer systems?
Yes, steel pipes can be used for sewer systems. Steel pipes are commonly used in sewer systems due to their durability, strength, and resistance to corrosion. They are able to withstand the harsh conditions and high pressure of sewage flow, making them a reliable choice for sewer infrastructure.
Q: Are steel pipes affected by UV rays?
Yes, steel pipes can be affected by UV rays. Prolonged exposure to UV radiation can lead to the degradation of the protective coatings on steel pipes, causing them to corrode and weaken over time. It is important to implement proper protective measures, such as applying UV-resistant coatings or using protective covers, to mitigate the impact of UV rays on steel pipes.
Q: What is hot rolled steel pipe? What is a cold drawn steel tube?
Seamless steel pipe, hot-rolled and cold-rolled (DIAL) seamless steel pipe two categories.Hot rolled steel tubes are divided into ordinary steel tubes, low and medium pressure boiler tubes, high pressure boiler tubes, alloy steel pipes, stainless steel pipes, oil cracking pipes, geological steel pipes and other steel pipes, etc..Cold rolled seamless steel pipe (DIAL) in general, steel pipe for low and medium pressure boiler tube, high-pressure boiler steel pipe, alloy steel pipe, stainless steel pipe, oil cracking tube and other steel tube, including carbon thin-walled steel, alloy thin-walled steel, stainless steel, thin steel tube. The outer diameter of hot-rolled seamless tube is generally greater than 32mm, the wall thickness is 2.5-75mm. The outer diameter of cold-rolled seamless steel tube can reach 6mm, the wall thickness can be up to 0.25mm, the outer diameter of thin-wall pipe can be 5mm, the wall thickness is less than 0.25mm, and cold rolling has higher precision than hot rolling dimension.
Q: What's the difference between a cracked carbon steel tube and a liquid carbon steel tube?
If the material is the same, the process is different from the test.
Q: How are steel pipes used in industrial manufacturing processes?
Steel pipes are commonly used in industrial manufacturing processes for various purposes, such as transporting fluids, gases, and solids, as well as providing structural support. They are used to create pipelines for water, oil, and gas transportation, as well as for conveying materials like ores and grains. Additionally, steel pipes are utilized in machinery, equipment, and infrastructure construction due to their strength, durability, and resistance to high pressure and extreme temperatures.
Q: How are steel pipes handled and transported safely?
Steel pipes are handled and transported safely through a combination of proper lifting and handling techniques, secure packaging, and appropriate transportation equipment. Before transportation, pipes are bundled, strapped, or put into crates to prevent any movement or damage during transit. Special lifting equipment such as cranes or forklifts are used to handle them, ensuring that proper weight distribution and balance are maintained. Additionally, securing the pipes to flatbed trucks or using specialized pipe carriers prevents them from rolling or shifting during transportation. Regular inspections, adherence to safety regulations, and trained personnel play a vital role in ensuring the safe handling and transportation of steel pipes.
Q: How are steel pipes used in the construction of bridges?
Steel pipes are commonly used in the construction of bridges as they provide structural support and stability. These pipes are used for various purposes, such as creating the framework, piling, and supporting the bridge's weight. Additionally, steel pipes are often used in the construction of bridge piers and abutments, as well as for drainage systems and utility tunnels. Their high strength and durability make steel pipes essential components in ensuring the safety and longevity of bridge structures.
Q: What are the applications of steel pipes in the automotive industry?
Steel pipes are used in the automotive industry for a variety of applications, including exhaust systems, fuel lines, and structural components. They provide durability, corrosion resistance, and high strength, making them ideal for withstanding the harsh conditions and heavy loads experienced in automotive applications. Steel pipes also offer flexibility in design and can be tailored to meet specific requirements, ensuring efficient and reliable performance in vehicles.
Q: How are steel pipes used in nuclear power plants?
Steel pipes are extensively used in nuclear power plants for various purposes. They are primarily used for the transportation of coolant, such as water or gas, which helps in removing heat from the reactor core. Steel pipes are also used to convey steam generated by the reactor to the turbine, where it is used to generate electricity. Additionally, steel pipes are utilized for the transportation of various fluids, such as lubricants and chemicals, for different processes within the plant. The durability, strength, and resistance to high temperatures and pressure make steel pipes an ideal choice for these critical applications in nuclear power plants.
Q: How do you calculate the deflection of a steel pipe?
To determine the deflection of a steel pipe, one must take into account various factors, including material properties, applied loads, and geometrical characteristics. The following steps can serve as a guide: 1. Material properties must be determined. This involves obtaining information about the steel pipe, such as its Young's modulus (E), which signifies its stiffness or resistance to deformation. Typically, this value is provided by the manufacturer or can be found in material databases. 2. The applied loads need to be analyzed. It is necessary to identify the types and magnitudes of the loads acting on the steel pipe. These loads can consist of point loads, distributed loads, or a combination of both. Additionally, the location and orientation of the applied loads must be determined. 3. The geometry of the pipe must be evaluated. The dimensions of the steel pipe, including its length (L), outer diameter (D), and wall thickness (t), should be measured or obtained. Accuracy in these values is crucial for precise calculations. 4. An appropriate calculation method should be selected. Depending on the complexity of the loading and support conditions, one may need to employ either simple beam theory or more advanced structural analysis methods, such as the finite element method (FEM). 5. The relevant equations must be applied. For simple beam theory, the Euler-Bernoulli beam equation can be utilized to calculate the deflection at a specific point on the pipe. This equation assumes the pipe is homogeneous, linearly elastic, and subjected to small deflections. In more complex scenarios, FEM software can handle the calculations. 6. Boundary conditions must be determined. The support conditions at both ends of the pipe, which can include fixed supports, simply supported ends, or combinations of both, need to be identified. These conditions significantly influence the deflection of the pipe. 7. The deflection can be calculated. By using the equations relevant to the chosen method and incorporating the material properties, applied loads, and geometry, one can calculate the deflection at specific points along the steel pipe. The deflection can be measured in terms of vertical displacement or angular rotation. It is important to note that calculating the deflection of a steel pipe may require specialized engineering knowledge and software tools. If one lacks experience in structural analysis, it is advisable to consult a professional engineer to ensure accurate results and safe design.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords