• Toroidal Solar Inverter PV Off-Grid Inverter GN-S-10KFS from China System 1
  • Toroidal Solar Inverter PV Off-Grid Inverter GN-S-10KFS from China System 2
Toroidal Solar Inverter PV Off-Grid Inverter GN-S-10KFS from China

Toroidal Solar Inverter PV Off-Grid Inverter GN-S-10KFS from China

Ref Price:
get latest price
Loading Port:
Shanghai
Payment Terms:
TT or LC
Min Order Qty:
-
Supply Capability:
-

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Description:

 

CNBMSOLAR is a world-leading and Vertical integrated manufacturer of high-performance with Silicon,

Wafer, Cells, Modules, which convert sunlight into electricity for residential, commercial, and utility-scale

power generation.

        

The capacity of CNBMSOLAR is reach to 1GW, and make sure each year our shipment capacity is more

Than 700-800MWs, at the same time, we have set up the largest solar power station with our partner

in Ukraine.

       

CNBM is a Quality + Service oriented company with“Excellence at Each Step” approach, composed of

the finest components from TUV and IEC-certified partners around the world, CNBM modules consistently

undergo a variety of trials at the company’s Test & Development Centre, ensuring peak performance

capabilities. The company is committed to develop and provide the world with clean and renewable energy

to ease the energy shortages as well as human kind’s impact on the environment.

Data:

 

'

 

Model

GN-□KFS□-□□V

Rated CapacityKVA

10

DC Input

Rated  VoltageVDC

216VDC

Low  VoltageVDC

194VDC

Low  Voltage Resume

227VDC

Load  OvervoltageVDC

300VDC

Load  Overvoltage ResumeVDC

297VDC

Grid input

Input  Voltage range

220±15﹪(VAC

Input  frequency

50±1Hz

switching  mode

002221

switching  time

≤10ms

AC Output

output  waveform

Sine wave

overload  ability

120% 1min

output  voltage

220±3%

Output  frequency

50±0.04Hz

THD

≤3℅(THD)

Dynamic  Response(0100%)

5%

Inverter  Efficiency

≥90%

Crest  CoefficientCF

3:1CF

Continuous running time

Continuous running

Display

LCD

Content

DC voltage, dc current,  voltage, utility line frequency, output voltage, output current, output  frequency, output power

Communication interface

RS232

Lightning protection  device

NO

Protection

Overcharge, over-discharge,  overload, short circuit, reverse polarity, internal overheated protections, etc

Dimensionsd\w\h  mm

500*550*1200

Packing Sized\w\h  mm

590*640*1290

Reference weightKg

189

Protection class

IP20

Environment

Noisy(dB/meter)

≤50

Operating  temperature()

-20~+50()

Storage  temperature()

-25+55()

Operating  humidity

0~95%No condensation

Operating  Altitude

≤5000m


PV Off-Grid Inverter GNS-10KFS from China

FAQ:Could you pls introduce more about CNBM?

 

CNBM Group is short for China National Building Materials Group Corporation, which is established in 1984 with approval from the State Council

CNBM Group is the largest comprehensive building materials industry group in China

 

The Group has a total asset of over RMB 360 billion, more than 180,000 employees and 17  subsidiaries

Q: What is the impact of temperature on the performance of a solar inverter?
The impact of temperature on the performance of a solar inverter is significant. High temperatures can cause the efficiency of the inverter to decrease, resulting in a reduction in power output. This is due to the fact that electronic components inside the inverter operate less efficiently at high temperatures. Additionally, elevated temperatures can lead to increased thermal stress on the inverter, potentially shortening its lifespan. Therefore, it is important to carefully consider the temperature conditions and provide adequate cooling or ventilation for optimal performance and longevity of the solar inverter.
Q: Can a solar inverter be used with a solar-powered water pumping system?
Yes, a solar inverter can be used with a solar-powered water pumping system. The solar inverter converts the direct current (DC) produced by the solar panels into alternating current (AC), which is necessary to power the water pump. By utilizing a solar inverter, the energy generated by the solar panels can be efficiently transferred to the water pumping system, allowing it to operate using clean and renewable energy.
Q: Can a solar inverter be used with different types of solar cell technologies?
Yes, a solar inverter can be used with different types of solar cell technologies. Solar inverters are designed to convert the DC electricity generated by solar panels, regardless of the type of solar cell technology, into AC electricity that can be used to power homes and businesses. Therefore, whether it is monocrystalline, polycrystalline, thin-film, or any other solar cell technology, a solar inverter can efficiently convert the generated electricity into usable form.
Q: Can a solar inverter be used in areas with high levels of electrical noise or interference?
Yes, a solar inverter can be used in areas with high levels of electrical noise or interference. However, it is important to ensure that the inverter is designed to handle such conditions and has appropriate noise filtering mechanisms in place to minimize any potential disruptions or damage caused by the interference.
Q: How does a solar inverter handle voltage and frequency variations caused by voltage sags and swells?
Voltage and frequency variations caused by voltage sags and swells are effectively managed by the diverse mechanisms equipped in a solar inverter. When there is a voltage sag or swell in the electrical grid, the solar inverter employs a technique known as Maximum Power Point Tracking (MPPT) to regulate the power output from the solar panels. During a voltage sag, where the grid voltage drops below the standard level, the solar inverter adjusts its MPPT algorithms to ensure that the solar panels continue operating at their maximum power point. This guarantees that the inverter extracts the most available power from the panels and compensates for the reduced grid voltage. By dynamically adjusting the operating point of the panels, the inverter mitigates the effects of the voltage sag and maintains an optimal power output. Similarly, in the case of a voltage swell, where the grid voltage exceeds the normal level, the solar inverter once again utilizes its MPPT capabilities to regulate power output. It adjusts the panels' operating point to prevent them from surpassing their rated voltage, thereby safeguarding them from potential damage. This allows the inverter to effectively handle the increased grid voltage and prevent any negative impact on the solar panels. Aside from voltage regulation, a solar inverter also addresses frequency variations caused by voltage sags and swells. It is designed to synchronize with the grid frequency and uphold a stable output frequency. When the grid frequency deviates from the normal range, the inverter adapts its internal control systems to match the grid frequency. This synchronization ensures that the power output from the inverter aligns with the grid requirements, facilitating seamless integration of solar energy into the electrical system. In conclusion, a solar inverter effectively manages voltage and frequency variations caused by voltage sags and swells by utilizing MPPT algorithms, voltage regulation mechanisms, and frequency synchronization capabilities. These features enable the inverter to adapt to changing grid conditions, maximize power extraction from the solar panels, and maintain a stable and reliable power output.
Q: How does a solar inverter handle frequency variations in the grid?
A solar inverter handles frequency variations in the grid by continuously monitoring the frequency and adjusting its own output accordingly. If the grid frequency increases, the inverter reduces its output to prevent overloading. Conversely, if the frequency decreases, the inverter increases its output to maintain a stable supply. This dynamic response ensures that the solar inverter efficiently synchronizes with the grid and contributes to grid stability.
Q: What is the maximum number of solar panels that can be connected to a solar inverter?
The maximum number of solar panels that can be connected to a solar inverter depends on various factors such as the power rating of the inverter, the voltage and current ratings of the solar panels, and the configuration of the solar array. It is typically recommended to consult the manufacturer's specifications or guidelines to determine the maximum number of panels that can be connected to a specific solar inverter.
Q: How does a solar inverter handle variations in AC load demand?
A solar inverter handles variations in AC load demand by continuously monitoring the load demand and adjusting the amount of power it delivers from the solar panels accordingly. This is achieved through advanced control algorithms that optimize the conversion of DC power generated from the solar panels into AC power that matches the load demand. The inverter maintains a stable voltage and frequency output, ensuring that the electrical devices connected to it receive a consistent and reliable power supply, even when there are fluctuations in the AC load demand.
Q: The working principle of photovoltaic grid - connected inverter
In the small-capacity inverter generally push-pull inverter circuit, full-bridge inverter circuit and high-frequency step-up inverter circuit three, push-pull circuit, the step-up transformer neutral plug connected to the positive power supply, two power Alternating current, the output to get AC power, due to the power transistor to ground, drive and control circuit is simple, and because the transformer has a certain leakage inductance, can limit the short circuit current, thus improving the reliability of the circuit. The disadvantage is the low utilization of the transformer, driving the emotional load is poor.
Q: Can a solar inverter be connected to a battery backup system?
Yes, a solar inverter can be connected to a battery backup system. This allows the solar power generated during the day to be stored in the batteries and used during times when there is no sunlight or during power outages.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords