• Aerospace Grade Polycrystalline Solar Cells - High Efficiency, Low Price System 1
  • Aerospace Grade Polycrystalline Solar Cells - High Efficiency, Low Price System 2
  • Aerospace Grade Polycrystalline Solar Cells - High Efficiency, Low Price System 3
Aerospace Grade Polycrystalline Solar Cells - High Efficiency, Low Price

Aerospace Grade Polycrystalline Solar Cells - High Efficiency, Low Price

Ref Price:
get latest price
Loading Port:
Shanghai
Payment Terms:
TT or LC
Min Order Qty:
5000 pc
Supply Capability:
8000000 pc/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing


Brief Introduction of Solar Cells

A solar cell, is an electrical device that converts the energy of light directly into electricity by the photovoltaic effect, which is a physical and chemical phenomenon. It is a form of photoelectric cell, defined as a device whose electrical characteristics, such as current, voltage, or resistance, vary when exposed to light. Solar cells are the building blocks of photovoltaic modules, otherwise known as solar panels.

Polycrystalline Silicon Solar Cells Advantage:

•  High efficiency and stable performance in photovoltaic conversion.
•  Advanced diffusion technique ensuring the homogeneity of energy conversion efficiency of the cell.
•  Advanced PECVD film forming, providing a dark blue silicon nitride anti-reflection film of homogenous color and  attractive appearance.
•  High quality metal paste for back surface and electrode, ensuring good conductivity, high pulling strength and ease of soldering.
•  High precision patterning using screen printing, ensuring accurate busbar location for ease with automatic soldering a laser cutting. 

Usage of Polycrystalline Solar Cells

Solar cells are often electrically connected and encapsulated as a module. Photovoltaic modules often have a sheet of glass on the front (sun up) side, allowing light to pass while protecting the semiconductor wafers from abrasion and impact due to wind-driven debris, rain, hail, etc. Solar cells are also usually connected in series in modules, creating an additive voltage. Connecting cells in parallel will yield a higher current; our solar cells have passed IEC Certification. With high and stable quality, our cells can greatly improve the performance of Solar Modules.

Specification:

Mechanical data and design

  Format          -       156 mm × 156 mm ± 0.5 mm  

Thickness-       -       200 μm ± 20 μm

Front (-)               1.4 mm bus bars (silver),blue anti-reflection coating (silicon nitride)

Back (+)           -     2 mm wide soldering pads (silver) back surface field (aluminium)

Temperature Coefficient of Cells

Voc. Temp .coef.%/K                 -0.364%/K   

Isc . Temp .coef.%/K                 +0.077%/K

Pm. Temp. coef.%/K                 -0.368%/K

 

Polycrystalline 156x156mm 3BB





EFF Code

EFF. (%)

Pmax(W)

Impp(A)

Vmpp(V)

Isc(A)

Voc(V)

1760

17.60

4.28

8.060

0.531

8.610

0.633

1740

17.40

4.23

8.030

0.524

8.570

0.632

1720

17.20

4.19

8.000

0.522

8.510

0.631

1700

17.00

4.14

7.850

0.521

8.490

0.622

1680

16.80

4.09

7.770

0.521

8.390

0.620

1660

16.60

4.04

7.650

0.519

8.350

0.615

1640

16.40

3.99

7.580

0.516

8.290

0.615


Intensity Dependence

Intensity [W/m2]      Isc× [mA]          Voc× [mV]           Pmpp

1000                         1.00                    1.000                 1.00

900                           0.90                    1.000                 0.90

800                           0.80                    0.99                   0.80

500                           0.50                    0.96                   0.49

300                           0.30                    0.93                   0.29

200                           0.20                    0.92                   0.19

 

IV Curve

Polycrystalline Solar Cells A GRADE Wholesale High Efficiency with Low Price

 

Solar Panel Images:


Polycrystalline Solar Cells A GRADE Wholesale High Efficiency with Low Price

Polycrystalline Solar Cells A GRADE Wholesale High Efficiency with Low Price


 

Packaging & Delivery of Polycrystalline Solar Cells

Carton Box Package and Deliver by air. It should be noticed that it should be avoid of water, sunshine and moist.

 

Faq

 

We have organized several common questions for our clients,may help you sincerely:

 

1.  What’s price per watt?

 A: It’s depends on the quantity, delivery date and payment terms of the order. We can talk further about the detail price issue. Our products is high        quality with lower price level.

2.  Can you tell me the parameter of your solar cells?

 We have different series of cells with different power output, both from c-si to a-si. Please take our specification sheet for your reference.

3.   How do you pack your products?

We have rich experience on how to pack the panels to make sure the safety on shipment when it arrives at the destination.

4.  Can you do OEM for us?

    Yes, we can.

5.  How long can we receive the product after purchase?

  In the purchase of product within three working days, We will arrange the factory delivery as soon as possible. The perfect time of receiving is related  to the state and position of customers. Commonly 7 to 10 working days can be served.

 

Silicon is the ideal material for solar cells, which is the silicon-based solar cells the main reason. But with the development of new materials and related technologies continue to develop, with other material-based solar cells are also showing more and more attractive prospect.
N-type Crystalline Solar Cell
In the bottom plate of the N-type semiconductor solar cell, a greater resistance to impurities, easier to improve the energy conversion efficiency, in theory, the attenuation rate is relatively low, but the process is more complex and costly. Pentavalent element incorporated in pure silicon crystal (such as phosphorus, arsenic, antimony, etc.), so as to replace the position of the crystal lattice of silicon atoms to form a N-type semiconductor.
At present, has reached large-scale production of N-type silicon solar cells, there are three, namely, Japan's Matsushita N-SiHITN type silicon solar cells, the United States SunpowerIBC structure N-type silicon solar cells, as well as Yingli Panda N-type silicon cells. In market share, the International Technology Roadmap for PV (ITRPV) Expected N-type Crystalline Solar Cell from 2014 up to 18% in 2020 to 50% left and right.
  N-type Crystalline Solar Cell industry level: 21% -24%
P- type Crystalline Solar Cell
 In the bottom of the P-type semiconductor solar cells, low cost, high attenuation rate, 25 years after the decay rate can reach 15-20%. Incorporation of trivalent elements (such as boron) in pure silicon crystal, so that the position of substitution of silicon atoms in the lattice to form P-type semiconductor.
Industrialization Level - Domestic: 18.7% -19.2% overseas: 19.2% -20%
Battery Polycrystalline
Polycrystalline silicon solar cells combines the high conversion efficiency monocrystalline silicon cells and preparation of amorphous silicon thin film materials as well as long-life battery, etc. relatively simplified new generation of batteries, the conversion efficiency is generally about 12%, slightly lower than the silicon solar cells, there is no obvious efficiency recession, and may be prepared on an inexpensive substrate material, the cost is much lower than silicon cells, and more efficient than amorphous silicon thin film batteries.
    Industry level: 17% -17.5%

  

 


Q: Can solar cells be used in developing countries?
Yes, solar cells can be used in developing countries. In fact, solar energy is an ideal solution for providing electricity in remote areas without access to a reliable power grid. Solar cells are cost-effective, require minimal maintenance, and can be easily installed in various locations. Moreover, using solar energy can help reduce reliance on fossil fuels, improve energy accessibility, and contribute to sustainable development in developing countries.
Q: Monocrystalline silicon and polycrystalline silicon cell in the appearance of what is the difference?
As the monocrystalline silicon cell and polycrystalline silicon cell pre-production process of different, so that they are from the appearance to the electrical performance are some differences.
Q: How do solar cells affect air pollution?
Solar cells reduce air pollution by generating electricity from the sun's energy without burning fossil fuels, thereby eliminating harmful emissions such as carbon dioxide, sulfur dioxide, and nitrogen oxides that contribute to air pollution.
Q: Can solar cells generate power at night?
No, solar cells cannot generate power at night as they rely on sunlight to produce electricity.
Q: Can solar cells be used in telecommunications infrastructure?
Yes, solar cells can be used in telecommunications infrastructure. They can power various components of the infrastructure such as cell towers, base stations, and remote equipment. Solar cells provide a reliable source of renewable energy that can be harnessed to meet the power requirements of telecommunications systems, particularly in remote and off-grid locations. This helps reduce dependence on traditional grid electricity and lowers the carbon footprint of the infrastructure.
Q: Can solar cells be used for powering sports stadiums?
Yes, solar cells can definitely be used to power sports stadiums. Solar panels can be installed on the rooftops of stadiums or in nearby areas where they can harness sunlight and convert it into electricity. This renewable energy source can help reduce carbon emissions, lower energy costs, and provide a sustainable power solution for sports stadiums.
Q: How do solar cells perform in high pollution areas?
Solar cells perform less efficiently in high pollution areas due to the reduced amount of sunlight reaching the cells. The presence of pollutants in the air, such as dust, smog, and particulate matter, can block or scatter sunlight, decreasing the overall solar irradiance available for conversion into electricity. This lowers the energy output and effectiveness of solar cells in such areas.
Q: How do solar cells perform in areas with extreme temperature fluctuations?
Solar cells typically perform well in areas with extreme temperature fluctuations. However, excessive heat can slightly reduce their efficiency, while extreme cold can temporarily decrease their power output. Nonetheless, solar cells are designed to withstand a wide range of temperatures, and advancements in technology have improved their performance and durability in extreme weather conditions.
Q: Can solar cells be used for powering electric gates?
Yes, solar cells can be used for powering electric gates. Solar cells convert sunlight into electricity, which can be used to charge batteries that power the electric gates. This renewable energy source is an environmentally friendly and cost-effective solution for gate automation.
Q: Can solar cells be used for powering remote research stations in Antarctica?
Yes, solar cells can be used for powering remote research stations in Antarctica. Solar cells are a sustainable and reliable source of energy that can harness the abundant sunlight available in Antarctica during the summer months. They can provide a consistent power supply to run essential equipment and facilities at remote research stations, reducing the dependence on fossil fuels and minimizing the environmental impact. Additionally, advancements in solar technology have improved the efficiency and durability of solar cells, making them a viable option for powering these isolated stations in extreme conditions.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords