• Polymer Solar Cells 156*156mm B Grade Low Price System 1
  • Polymer Solar Cells 156*156mm B Grade Low Price System 2
  • Polymer Solar Cells 156*156mm B Grade Low Price System 3
Polymer Solar Cells 156*156mm B Grade Low Price

Polymer Solar Cells 156*156mm B Grade Low Price

Ref Price:
get latest price
Loading Port:
Shanghai
Payment Terms:
TT or LC
Min Order Qty:
30000 pc
Supply Capability:
1000000 pc/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Product description

Poly Solar Cells 156*156mm B Grade Low Price

A solar cell, or photovoltaic cell, is an electrical device that converts the energy of light directly into electricity by the photovoltaic effect, which is a physical and chemical phenomenon.[1] It is a form of photoelectric cell, defined as a device whose electrical characteristics, such as current, voltage, or resistance, vary when exposed to light. Solar cells are the building blocks of photovoltaic modules, otherwise known as solar panels.

Solar cells are described as being photovoltaic irrespective of whether the source is sunlight or an artificial light. They are used as a photodetector (for example infrared detectors), detecting light or other electromagnetic radiation near the visible range, or measuring light intensity.

In contrast, a solar thermal collector supplies heat by absorbing sunlight, for the purpose of either direct heating or indirect electrical power generation from heat. A "photoelectrolytic cell" (photoelectrochemical cell), on the other hand, refers either to a type of photovoltaic cell (like that developed by Edmond Becquerel and modern dye-sensitized solar cells), or to a device that splits water directly into hydrogen and oxygen using only solar illumination.

 

Advantage Of Poly Solar Cell 156mm

1: High quality cell, Level A cell (14%—17.5%)

2.Dimensione:156*156mm Diagonal:200mm

3: Qualified certification: TUV,CE certification.

4: Warranty: five years for whole unit

  

Usage/Application Of Poly Solar Cell 156mm

1.The absorption of light, generating either electron-hole pairs or excitons.

2.The separation of charge carriers of opposite types.

3.The separate extraction of those carriers to an external circuit.

 

 

 

 

Packaging & Delivery Of Poly Solar Cell 156mm

Packaging Detai

Packaging Detail:Export Carton and Pallet or under customer request.

delivery Detail:10-20days

 

Poly Solar Cells 156*156mm B Grade Low Price

Poly Solar Cells 156*156mm B Grade Low Price

Poly Solar Cells 156*156mm B Grade Low Price

Poly Solar Cells 156*156mm B Grade Low Price

Product Specifician

 

Electrical Characteristic

 

Efficiency (%)

 Pmpp (W)

Umpp (V)

Impp (A)

Uoc (V)

Isc (A)

FF (%)

17.25

4.197

0.524

7.992

0.62

8.458

80.03%

17

4.137

0.524

7.876

0.619

8.353

80.01%

16.75

4.076

0.522

7.81

0.617

8.286

79.73%

16.5

4.015

0.518

7.746

0.613

8.215

79.73

16.25

3.955

0.515

7.683

0.61

8.144

79.61%

16

3.894

0.512

7.613

0.608

8.075

79.31%

15.75

3.833

0.51

7.534

0.605

8.058

78.62%

15.5

3.772

0.508

7.453

0.604

8.02

77.87%

15.25

3.771

0.505

7.35

0.604

9.997

76.83%

15

3.65

0.503

7.271

0.604

7.989

75.64%

14.5

3.529

0.499

7.067

0.604

7.988

73.14%

14

3.407

0.499

6.833

0.604

7.833

72.01%

 

 

Intensity Dependence

Intensity [W/m2]

Isc× [mA]

Voc× [mV]

1000

1.00

1.000

900

0.90

0.989

500

0.50

0.963

300

0.30

0.939

200

0.20

0.920

 

 

FAQ

Q:What price for each watt?

A:It depends on the quantity, delivery date and payment terms

Q:What is your warranty system?

A:Our Solar cells performance guarantees for 25 years

Q:How do you pack your products?

A:We have rich experience on how to pack thecells to make sure the safety on shipment when it arrives at the destination.

 

 

 

What is the solar cell

A photoelectric cell designed to convert sunlight into electrical energy,typically consisting of layers or sheets of specially prepared silicon.Electrons, displaced through the photoelectric by the Sun's radiantenergy in one layer, flow across a junction to the other layer, creating avoltage across the layers that can provide power to an external circuit.Solar cells are used as power supplies in calculators, satellites, and otherdevices, and as a primary source of electricity in remote locations. 

What is a Solar Cell

A solar cell or photovoltaic cell is a device which generates electricity directly from visible light by means of the photovoltaic effect. In order to generate useful power, it is necessary to connect a number of cells together to form a solar panel, also known as a photovoltaic module. There is more about the the different types of solar cell . The nominal output voltage of a solar panel is usually 12 Volts, and they may be used singly or wired together into an array. The number and size required is determined by the available light and the amount of energy required.

73. What is the tiny little but the most efficient solar cell

While solar power promises a lot and always free compared to other energy, it's only ever going to help satisfy our energy needs if it becomes efficient enough. Fortunately, some solar cell companies has just made the world's most efficient solar cell, which converts a staggering 44.4 percent of incident light into electricity. Fossil fuels may spend less space of our energy.

The cell uses a special lens-based concentrator system, which focuses sunlight onto the cell to help improve the efficiency. Once, the light's focussed, a stack of three photo-absorption layers convert it into electricity. Even then it's no mean feat to squeeze out an efficiency of 44.4 percent, and the process saw Sharp invest a huge amount of time in tuning the device's dimensions to focus the light properly and reduce losses between layers.

While it's impressive, you probably won't see one strapped to the roof of a house any time soon. Devices this exotic are more likely to end up on a spacecraft in the first instance, where efficiency trumps cost every time. That's not to say it won't ever make it to the domestic market—it might just take a little time.

The system of solar cell

The amount of power generated by solar cells is determined by the amount of light falling on them, which is in turn determined by the weather and time of day. In the majority of cases some form of energy storage will be necessary.

In a Grid-connected system, the solar array is connected to the mains. Any surplus power is sold to the electricity company, and power is bought back from them when it is needed.

In a Stand-alone system, however, this is not possible. In this type of system the usual choice for energy storage is the lead-acid battery. The number and type of batteries is dependent on the amount of energy storage needed. Find out more about batteries

 

 

Q: How long does it take to install solar cells on a residential property?
The installation of solar cells on a residential property typically takes a few days to a few weeks, depending on various factors such as the size of the system, the complexity of the installation, and the availability of the installation team.
Q: What is the role of maximum power point tracking in solar cell systems?
The role of maximum power point tracking (MPPT) in solar cell systems is to optimize the energy output of the solar cells. It does this by continuously adjusting the operating voltage and current of the solar cells to find the maximum power point, where the solar cells are operating at their highest efficiency. MPPT ensures that the solar cells are always delivering the maximum amount of power to the system, resulting in improved energy generation and increased overall system performance.
Q: What is a good introduction of solar cell?
You should start with a nice ppt.
Q: My solar cells are broken, can I just buy one and replace it?
It's a bit risky to do that by yourself.
Q: What is the effect of wind on solar cell performance?
The effect of wind on solar cell performance can be both positive and negative. On one hand, wind can help cool the solar cells, preventing overheating and improving their overall efficiency. Additionally, wind can help clean the surface of the solar panels, removing dust and debris that may obstruct sunlight and reduce energy production. On the other hand, strong winds can create vibrations and mechanical stress on the solar panels, potentially damaging their structure or causing misalignment. Therefore, while some wind is beneficial for solar cell performance, excessive or turbulent wind conditions may have a detrimental impact.
Q: What is the average lifespan of a solar cell in space?
The average lifespan of a solar cell in space can vary depending on various factors such as the quality of the materials used, the level of radiation exposure, and the overall design of the solar cell. However, on average, solar cells in space can last anywhere between 10 to 25 years.
Q: Can the solar powered cells really work better than the normal cells?
The solar powered cells are absolutely better than the normal cells because the power is generating from the sunshine.
Q: Can solar cells be used for powering remote oil and gas pipelines?
Yes, solar cells can be used for powering remote oil and gas pipelines. Solar power offers a reliable and sustainable energy source that can be easily installed in remote locations. It provides a cost-effective solution for powering these pipelines, reducing the dependence on fossil fuels and minimizing the environmental impact.
Q: How do solar cells handle electromagnetic interference?
Solar cells are designed to handle electromagnetic interference by incorporating shielding techniques such as grounded enclosures and filtering components. This helps to minimize the impact of electromagnetic waves and ensure uninterrupted power generation.
Q: How are solar cells tested for quality?
Solar cells are tested for quality through a series of rigorous assessments and measurements. These tests typically include evaluating the electrical performance, efficiency, durability, and reliability of the solar cells. Various industry standards and protocols are followed to ensure accurate and consistent testing. This involves measuring parameters like open-circuit voltage, short-circuit current, fill factor, and power output under standard test conditions. Additionally, solar cells undergo tests for mechanical strength, resistance to environmental factors (such as temperature, humidity, and UV radiation), and long-term stability to ensure their quality and performance over their lifespan.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords