• Sofar Solar Inverter On Grid Solar Inverter Omniksol-13k-TL 3 Phase System 1
  • Sofar Solar Inverter On Grid Solar Inverter Omniksol-13k-TL 3 Phase System 2
  • Sofar Solar Inverter On Grid Solar Inverter Omniksol-13k-TL 3 Phase System 3
Sofar Solar Inverter On Grid Solar Inverter Omniksol-13k-TL 3 Phase

Sofar Solar Inverter On Grid Solar Inverter Omniksol-13k-TL 3 Phase

Ref Price:
get latest price
Loading Port:
Shanghai
Payment Terms:
TT OR LC
Min Order Qty:
1 pc
Supply Capability:
3000 pc/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Omnik new energy solar inverter

Omniksol-2.0k-TL Photon Efficiency up to 3kW
in the world------ Photon tested Jan. 2012.

Omniksol-13k-TL

1.Futures

Max. Efficiency 98.2%, Euro. Efficiency 97.8%.

Double MPPT, MPPT accuracy up to 99.9%.

IP65 design, work properly under severe outdoor circumstances.

Full solution of safety protection, DC switch integrated.

Flexible input and output connections, support RS485, Ethernet

and USB communication.

Transformerless design and high power density, lighter and more

convenient for installation.

2.technical data:

Type

Omniksol-13k-TL

Omniksol-17k-TL

Omniksol-20k-TL

Max. PV-Generator Power [W]

13500

17600

21200

Max. DC voltage [V]

1000

1000

1000

MPPT DC voltage Range [V]

400-800

440-850

440-850

Turn off DC voltage [V]

640

640

640

Max. DC Current [A]

22/11

22/22

22/22

Nominal DC Current [A]

28

33

33

Number of DC Connection

2

2

2

DC-Connection

MC4

MC4

MC4

Number of MPP trackers Turn on Power [W]

2

2

2

3.Product certificate

 

EN 61000

VDE 0126-1-1

C10/11

G83/2

UTE C15-712-1

AS4777

CQC

CE10-21

EN50438

4.product outlook

 

On grid solar inverter Omniksol-13k-TL 3 PHASE

On grid solar inverter Omniksol-13k-TL 3 PHASE

FAQ

1. What price for each watt?

It depends on the efficiency of the solar cell, quantity, and delivery date and payment terms.

2. How long can we receive the product after purchase?

In the purchase of product within three working days, We will arrange the factory delivery as soon as possible. The pacific time of receiving is related to the state and position of customers. Commonly 7 to 10 working days can be served.

We can provide you not only the solar material but also the off grid solar system, we can also provide you service with on grid plant.

4. How do you pack your products?

We have rich experience on how to pack the solar cell to make sure the safety on shipment; we could use wooden box or pallet as buyer's preference.

5. Can you do OEM for us?

Yes, we can.

 

Q: Can a solar inverter be used with a solar-powered irrigation system?
Yes, a solar inverter can be used with a solar-powered irrigation system. The solar inverter is responsible for converting the DC power generated by the solar panels into AC power, which can then be utilized to power the irrigation system. This allows for efficient and sustainable water distribution in agricultural fields through the use of solar energy.
Q: Can a solar inverter be used with solar-powered streetlights?
Yes, a solar inverter can be used with solar-powered streetlights. The solar inverter converts the direct current (DC) generated by the solar panels into alternating current (AC) that is required to power the streetlights. This enables the solar-powered streetlights to function efficiently and effectively.
Q: Can a solar inverter be used with battery storage?
Yes, a solar inverter can be used with battery storage. In fact, it is commonly used in solar energy systems to convert the direct current (DC) power generated by solar panels into alternating current (AC) power that can be used by household appliances or stored in batteries for later use. The solar inverter plays a crucial role in managing the flow of electricity between the solar panels, batteries, and the electrical grid, ensuring efficient energy utilization and storage.
Q: After the PV inverter, how to achieve the same period before the network?
When the voltage, frequency, phase does not meet the requirements, the automatic closing closing pulse.
Q: Can a solar inverter be used with different grid voltages?
No, a solar inverter cannot be used with different grid voltages. Solar inverters are designed to convert the DC power generated by solar panels into AC power that matches the specific voltage and frequency of the grid. Using a solar inverter with different grid voltages can cause damage to the inverter and can also be a safety hazard.
Q: Can a solar inverter be used with a solar-powered water pump?
Yes, a solar inverter can be used with a solar-powered water pump. The solar inverter is responsible for converting the direct current (DC) power generated by the solar panels into alternating current (AC) power that can be used to operate the water pump. This allows for a more efficient and reliable operation of the solar-powered water pump system.
Q: Are there any government incentives for installing solar inverters?
Yes, there are government incentives available for installing solar inverters. Many countries offer tax credits, grants, or rebates to encourage the adoption of solar energy. These incentives vary depending on the region and may also include net metering programs or feed-in tariffs, which allow solar system owners to sell excess electricity back to the grid. It is advisable to research and consult local government agencies or renewable energy organizations to determine the specific incentives available in your area.
Q: What is the maximum DC input current that a solar inverter can handle?
The maximum DC input current that a solar inverter can handle depends on the specifications and capabilities of the specific model. It can vary significantly, ranging from a few amperes to several hundred amperes, based on factors such as the power rating and design of the inverter.
Q: What are the common issues and troubleshooting steps for a solar inverter?
Solar inverters can encounter various problems, such as failure to turn on, lack of power output, insufficient power output, intermittent power output, or error messages displayed on the inverter. Below are some steps you can take to troubleshoot these issues: 1. Verify the power supply: Ensure that the inverter is properly connected to the power source and that there are no electrical supply problems. Check the circuit breaker or fuse box to ensure it has not been tripped. 2. Inspect the wiring: Examine the wiring connections to ensure they are secure and undamaged. Loose or disconnected wires can cause power issues. If any damage is found, consider seeking the assistance of a professional electrician for repair or replacement. 3. Clean the solar panels: Dust, debris, or shading on the solar panels can reduce power output. Use a soft cloth or hose to clean the panels. If nearby trees or structures cast shade on the panels, consider trimming or removing them if feasible. 4. Check for error messages: If the inverter displays an error message, consult the user manual or manufacturer's website for the error code's meaning and recommended troubleshooting steps. If necessary, contact the manufacturer's customer support for further guidance. 5. Monitor weather conditions: Solar inverters may generate less power during cloudy or overcast days. However, if power output consistently remains low even in ideal weather conditions, there may be an issue with the inverter itself. 6. Reset the inverter: Some inverters offer a reset button or option. Attempt to reset the inverter to its factory settings, but bear in mind that this may erase any customized settings or configurations. 7. Update the firmware: Check if there are any firmware updates available for your specific inverter model. Updating the firmware can sometimes resolve issues and enhance performance. 8. Seek professional consultation: If the above troubleshooting steps do not resolve the issue, it is advisable to contact a professional solar installer or electrician. They possess the expertise and equipment required to diagnose and address more complex problems with solar inverters. Always prioritize safety when troubleshooting electrical equipment. If you are uncertain or uncomfortable with any troubleshooting steps, it is best to seek professional assistance to prevent potential hazards.
Q: How does a solar inverter synchronize with the electrical grid?
A solar inverter synchronizes with the electrical grid through a process called grid synchronization. This involves the inverter constantly monitoring the voltage and frequency of the grid and adjusting its own output accordingly to match the grid's parameters. Once the inverter's output matches the grid's voltage and frequency, it can seamlessly feed the solar-generated electricity into the grid, ensuring safe and efficient integration of solar power into the existing electrical infrastructure.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords