• on grid solar inverter Omniksol-3.0k-TL System 1
  • on grid solar inverter Omniksol-3.0k-TL System 2
  • on grid solar inverter Omniksol-3.0k-TL System 3
on grid solar inverter Omniksol-3.0k-TL

on grid solar inverter Omniksol-3.0k-TL

Ref Price:
get latest price
Loading Port:
Shanghai
Payment Terms:
TT OR LC
Min Order Qty:
-
Supply Capability:
3000 pc/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Omnik new energy solar inverter

Omniksol-2.0k-TL Photon Efficiency up to 3kW
in the world------ Photon tested Jan. 2012.

Omniksol-3k-TL

Futures

Transformerless design, high efficiency (Max.97.6%,Euro. 97.0%)

Multi MPPT channels

High MPP tracking accuracy(>99.9%)

Wide DC input range(120-590 Vdc), compatible with different

module technologies

Easy wiring, installating and operating

IP 65 design, suitable for indoor and outdoor installation

5 years warranty(10~25 years as option)

technical data:

Type

Omniksol-3.0k-TL

Omniksol-4.0k-TL

Omniksol-5.0k-TL

Max. PV-Generator Power [W]

3400

4500

5000

Max. DC voltage [V]

590

590

590

MPPT DC voltage Range [V]

150-500

150-500

150-500

Turn off DC voltage [V]

120

120

120

Max. DC Current [A]

36

36

36

Nominal DC Current [A]

28

33

33

Number of DC Connection

2

2

2

DC-Connection

MC4

MC4

MC4

Number of MPP trackers Turn on Power [W]

2

2

2

Turn on power(W)

10

10

10

Q:How do you calculate the maximum power point tracking range for a solar inverter?
To calculate the maximum power point tracking (MPPT) range for a solar inverter, you need to consider the solar panel's voltage and current characteristics. The MPPT range is determined by finding the maximum power output from the solar panel, which occurs at the point where the voltage and current are optimized. This is typically done by using a control algorithm that adjusts the inverter's operating point to track the maximum power point. The range will depend on various factors such as the solar panel's temperature, irradiance, and electrical characteristics.
Q:Installation and maintenance of photovoltaic grid - connected inverter
, any failure that affects the safety performance of the inverter must be immediately removed before turning on the inverter again.
Q:Can a solar inverter be used with a solar-powered irrigation system?
Yes, a solar inverter can be used with a solar-powered irrigation system. The solar inverter is responsible for converting the DC power generated by the solar panels into AC power, which can then be utilized to power the irrigation system. This allows for efficient and sustainable water distribution in agricultural fields through the use of solar energy.
Q:How does a solar inverter handle grid synchronization during startup?
A solar inverter handles grid synchronization during startup by employing advanced control algorithms. It continuously monitors the grid voltage and frequency, aligns itself with the grid parameters, and gradually increases its output power to match the grid. This synchronization process ensures that the solar inverter seamlessly integrates with the grid and provides stable and synchronized power generation.
Q:What are the communication protocols used in solar inverters?
There are several communication protocols commonly used in solar inverters to facilitate communication between the inverter and other devices or systems. Some of the most commonly used communication protocols in solar inverters include: 1. Modbus: Modbus is a widely used communication protocol for industrial devices, including solar inverters. It is a serial communication protocol that allows for the transmission of data between the inverter and other devices, such as monitoring systems or data loggers. Modbus is known for its simplicity and flexibility, making it a popular choice in the solar industry. 2. SunSpec: SunSpec is a communication protocol specifically designed for the solar industry. It provides a standardized way for solar inverters to communicate with other devices, such as smart meters or monitoring systems. SunSpec supports both wired and wireless communication, allowing for easy integration of solar inverters into larger energy management systems. 3. CAN bus: CAN (Controller Area Network) bus is a widely used communication protocol in various industries, including automotive and industrial applications. It is a robust and reliable protocol that allows for high-speed communication between devices. Some solar inverters utilize CAN bus to communicate with other devices or systems, providing a reliable means of data transfer. 4. Ethernet: Ethernet is a widely used communication protocol in the IT industry, and it is also utilized in some solar inverters. By using Ethernet, solar inverters can communicate with other devices or systems over a local area network (LAN) or the internet. Ethernet offers high-speed communication and can support various communication standards, making it a versatile option for solar inverters. It's important to note that different solar inverter manufacturers may use different communication protocols or a combination of them. The choice of communication protocol depends on factors such as the specific requirements of the system, the compatibility with other devices or systems, and the level of integration desired.
Q:What is the role of galvanic isolation in a solar inverter?
The role of galvanic isolation in a solar inverter is to provide electrical safety and prevent potential hazards. It separates the input and output circuits electrically, using transformers or optocouplers, to eliminate any potential voltage differences, ground loops, or electrical noise that could cause damage to the inverter or connected devices. Additionally, galvanic isolation helps to protect against electric shocks and ensures the safety of both the system and individuals working with or around the solar inverter.
Q:What are the key factors affecting the lifespan of a solar inverter?
The key factors affecting the lifespan of a solar inverter include the quality and durability of its components, proper maintenance and regular servicing, the operating environment, the load capacity, and the level of electrical stress it experiences.
Q:How does a solar inverter handle islanding detection?
A solar inverter handles islanding detection by constantly monitoring the electrical grid. If it detects that the grid has been disconnected, it initiates a process to disconnect itself from the grid to prevent an islanding event. This is typically done through the use of advanced algorithms and protective mechanisms to ensure the safety and stability of the electrical system.
Q:What is the operating temperature range of a solar inverter?
The operating temperature range of a solar inverter typically varies between -20°C to 60°C (-4°F to 140°F).
Q:How does a solar inverter provide ground fault protection?
A solar inverter provides ground fault protection by continuously monitoring the flow of electricity between the solar panels and the electrical grid. If it detects any abnormal or excessive current leakage to the ground, it quickly shuts off the flow of electricity to prevent electrical hazards, such as electric shocks or electrical fires.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Hot Searches

Related keywords