• 1.5kW KD-GTI Series Micro Inverter - Hot Sales, High Quality System 1
  • 1.5kW KD-GTI Series Micro Inverter - Hot Sales, High Quality System 2
1.5kW KD-GTI Series Micro Inverter - Hot Sales, High Quality

1.5kW KD-GTI Series Micro Inverter - Hot Sales, High Quality

Ref Price:
get latest price
Loading Port:
China main port
Payment Terms:
TT OR LC
Min Order Qty:
1000 pc
Supply Capability:
100000 pc/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Structure

The transition from a centralized to a distributed inverter optimizes energy collection.

The converter module integrated into the solar panels can reduce installation costs.

Soft switch technology to replace hard-switching technology can improve efficiency and reduce heat dissipation.

From cottage industry to mass production, standardized design (hardware and software) to improve reliability and reduce costs.

Using a special capacitor (due to the high failure rate). Design requires a higher voltage to reduce the current, we use a special electrolytic capacitors.

The converter can be connected to the grid to eliminate the need for many battery applications. The high price of batteries, require maintenance, life expectancy is shorter.

Work required micro-inverter power increasingly smaller (only a few hundred watts), which can reduce the internal temperature and improve reliability.

Micro-inverter solar inverter system needs to deal with a lot of a particular power level, in order to increase production, thereby reducing costs.


DC input voltage range:10.5-28VDC
AC output voltage range:80-160VAC/180-260VAC
AC output power :950Wp
AC frequency range:50Hz/60Hz
G.W.:2.4
Size:394mm*209mm*117mm

 

 

KD-GTI Series Using IP67 waterproof streamline design, Can effectively prevent rainwater on the surface erosion, Built-in high-performance Maximum Power Point Tracking(MPPT)Function,Better able to track changes in the solar luminosity and control different output power, Effectively capture and collect sunlight. AC electric power transmission using the reverse transmission technology, Is one of our patented technology, The inverter output power can provide load priority use, Extra electricity to the grid, Efficient use of the inverter to the power emitted, Electricity transmission rate of up to 99%.

Features

Pure Sine Wave Output;

High performance Maximum Power Point Tracking(MPPT);

Power Automatically Locked(APL);

Reverse power transmission;

High-Frequency High Conversion Rate;

Anti-Islanding Protect;

Input /output is fully isolated to protect the electrical safety;

Multiple parallel stacking;

The Leading Patent Technology;

IP65 WaterProof;

Flexible Installation;

Simplify maintenance (user serviceable)

High Efficiency & Best Cost-Effectiveness

Images

 

 

KD-GTI Series Micro Inverter,Hot Sales,High Quality

KD-GTI Series Micro Inverter,Hot Sales,High Quality

 

 

Specification

Input   Data

KD-WV250-120VAC/230VAC

Recommended input power

200-300Watt

Recommend the use of PV modules

300W/Vmp>34V/Voc<50v< span="">

Maximum input DC voltage

50V

Peak power tracking voltage

25-40V

Operating Voltage Range

17-50V

Min / Max start voltage

22-50V

Maximum DC short current

15A

Maximum Input Current

9.8A

Output Data

@120VAC

@230VAC

Peak power output

260Watt

260Watt

Rated output power

250Watt

250Watt

Rated output current

2.08A

0.92A

Rated voltage range

80-160VAC

180-260VAC

Rated frequency range

57-62.5Hz

47-52.5Hz

Power factor

>96%

>96%

Maximum units per branch circuit

15PCS(Single-phase)

30PCS(Single-phase)

Output Efficiency

@120VAC

@230VAC

Static MPPT efficiency

99.5%

99.5%

Maximum output efficiency

92.3%

94.6%

The average efficiency

91.2%

93.1%

Night time power consumption

<50mW Max

<70mW Max

THDI

<5%< span="">

<5%< span="">

Exterior

Ambient temperature

-40°C to +60°C

Operating temperature range   (inverter inside)

-40°C to +82°C

Dimensions (WxHxD)

191mm*1176mm*38mm

Weight

0.83kg

Waterproof Rating

IP65

Cooling

Self-cooling

Feature

Power transmission mode

Reverse transfer, load priority

Electromagnetic compatibility

EN50081.part1EN50082.part1

Grid disturbance

EN61000-3-2 Safety EN62109

Grid detection

DIN VDE 1026 UL1741

Certificate

CEC,CE National patent technology

 

  1. The transition from a centralized to a distributed inverter optimizes energy collection.

  2. The converter module integrated into the solar panels can reduce installation costs.

  3. Soft switch technology to replace hard-switching technology can improve efficiency and reduce heat dissipation.

  4. From cottage industry to mass production, standardized design (hardware and software) to improve reliability and reduce costs.

  5. Using a special capacitor (due to the high failure rate). Design requires a higher voltage to reduce the current, we use a special electrolytic capacitors.

  6. The converter can be connected to the grid to eliminate the need for many battery applications. The high price of batteries, require maintenance, life expectancy is shorter.

  7. Work required micro-inverter power increasingly smaller (only a few hundred watts), which can reduce the internal temperature and improve reliability.

  8. Micro-inverter solar inverter system needs to deal with a lot of a particular power level, in order to increase production, thereby reducing costs.

FAQ

Can we visit your factory?

Surely, I will arrange the trip basing on your business schedule.

Can you do OEM for us?

Yes, we can.

How do you pack your products?

We have rich experience on how to pack the panels to make sure the safety on shipment when it arrives at the destination.

Can you help us install the module if we cooperate with you?

We haven’t entered into installation sector, but we have the plan in near future.

 

 

Q: Can a solar inverter be connected to a battery storage system?
Yes, a solar inverter can be connected to a battery storage system. This allows excess solar energy generated during the day to be stored in the batteries and used later when there is no sunlight, providing a reliable source of power.
Q: How do you calculate the efficiency of a solar inverter?
To calculate the efficiency of a solar inverter, you need to divide the output power by the input power and multiply the result by 100 to get a percentage. The formula is: Efficiency = (Output Power / Input Power) * 100.
Q: Can a solar inverter convert DC power to AC power during a power outage?
No, a solar inverter cannot convert DC power to AC power during a power outage. Solar inverters rely on the grid for synchronization and voltage reference, so when there is a power outage, the inverter automatically shuts down to prevent back-feeding electricity into the grid and endangering utility workers.
Q: How does a solar inverter work?
A solar inverter works by converting the direct current (DC) electricity generated by solar panels into alternating current (AC) electricity that can be used to power appliances and feed into the electrical grid. It does this by using electronic circuits to convert the DC electricity into a usable form that matches the voltage and frequency of the AC electricity. This conversion process involves several stages, including rectification, filtering, and inversion, which ultimately enables the solar energy to be utilized effectively.
Q: Can a solar inverter be used with different grid voltages or frequencies?
No, a solar inverter cannot be used with different grid voltages or frequencies. Solar inverters are designed to convert the DC power generated by solar panels into AC power that matches the specific voltage and frequency of the local electrical grid. Using a solar inverter with different grid voltages or frequencies can lead to compatibility issues and may result in inefficient or malfunctioning operation of the system.
Q: What is the role of reactive power control in a solar inverter?
The role of reactive power control in a solar inverter is to maintain the power factor of the system by managing the flow of reactive power. This helps to improve the overall efficiency and stability of the solar power generation system. Reactive power control ensures that the inverter can supply or absorb the necessary reactive power to balance the system, compensate for reactive power losses, and meet the grid requirements.
Q: Can a solar inverter be used in areas with high levels of dust or pollution?
Yes, a solar inverter can be used in areas with high levels of dust or pollution. However, it is important to regularly clean and maintain the inverter to ensure its optimal performance. Dust and pollution can potentially accumulate on the inverter's surface, affecting its efficiency and lifespan. Regular cleaning and maintenance will help mitigate any issues and ensure the inverter continues to function effectively.
Q: Can a solar inverter be used in commercial applications?
Yes, a solar inverter can be used in commercial applications. Solar inverters are designed to convert the direct current (DC) generated by solar panels into alternating current (AC) that can be used to power electrical devices and appliances. This makes them suitable for a wide range of commercial applications such as offices, retail stores, factories, and other commercial buildings where solar energy can be harnessed to reduce electricity costs and promote sustainability.
Q: How does a solar inverter handle sudden changes in solar irradiance?
A solar inverter handles sudden changes in solar irradiance by constantly monitoring the input voltage and adjusting its output power accordingly. It employs maximum power point tracking (MPPT) algorithms to optimize the energy conversion from the solar panels. When there is a sudden increase or decrease in solar irradiance, the inverter quickly adapts by regulating the voltage and current to maintain a stable and efficient output. This ensures that the generated solar power is effectively utilized and protects the system from potential damage caused by voltage fluctuations.
Q: How much maintenance is required for a solar inverter?
Solar inverters typically require very little maintenance. They are designed to be reliable and durable, requiring minimal attention throughout their lifespan. Regular visual inspections to check for any debris or dust accumulation, as well as ensuring proper ventilation, are recommended. Additionally, monitoring the inverter's performance through software or online platforms can help identify any potential issues. However, in general, solar inverters are known for their low maintenance requirements, making them a reliable choice for renewable energy systems.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords