• K Solar Inverter - KD-WVC295 Series Micro Inverter, High Efficiency & Best Cost-Effectiveness System 1
  • K Solar Inverter - KD-WVC295 Series Micro Inverter, High Efficiency & Best Cost-Effectiveness System 2
  • K Solar Inverter - KD-WVC295 Series Micro Inverter, High Efficiency & Best Cost-Effectiveness System 3
K Solar Inverter - KD-WVC295 Series Micro Inverter, High Efficiency & Best Cost-Effectiveness

K Solar Inverter - KD-WVC295 Series Micro Inverter, High Efficiency & Best Cost-Effectiveness

Ref Price:
get latest price
Loading Port:
China main port
Payment Terms:
TT OR LC
Min Order Qty:
1000 pc
Supply Capability:
100000 pc/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Structure

The transition from a centralized to a distributed inverter optimizes energy collection.

The converter module integrated into the solar panels can reduce installation costs.

Soft switch technology to replace hard-switching technology can improve efficiency and reduce heat dissipation.

From cottage industry to mass production, standardized design (hardware and software) to improve reliability and reduce costs.

Using a special capacitor (due to the high failure rate). Design requires a higher voltage to reduce the current, we use a special electrolytic capacitors.

The converter can be connected to the grid to eliminate the need for many battery applications. The high price of batteries, require maintenance, life expectancy is shorter.

Work required micro-inverter power increasingly smaller (only a few hundred watts), which can reduce the internal temperature and improve reliability.

Micro-inverter solar inverter system needs to deal with a lot of a particular power level, in order to increase production, thereby reducing costs.

DC input voltage range22-50VDC

AC output voltage range80-160VAC/180-260VAC

AC output power 260W

AC frequency range50Hz/60Hz

G.W.0.88KG

Size245mm*200mm*30mm

KD-WVC295 Series Using IP67 waterproof streamline design, Can effectively prevent rainwater on the surface erosion, Built-in high-performance Maximum Power Point Tracking(MPPT)Function,Better able to track changes in the solar luminosity and control different output power, Effectively capture and collect sunlight. AC electric power transmission using the reverse transmission technology, Is one of our patented technology, The inverter output power can provide load priority use, Extra electricity to the grid, Efficient use of the inverter to the power emitted, Electricity transmission rate of up to 99%.

Features

Pure Sine Wave Output;

High performance Maximum Power Point Tracking(MPPT);

Power Automatically Locked(APL);

Reverse power transmission;

High-Frequency High Conversion Rate;

Anti-Islanding Protect;

Input /output is fully isolated to protect the electrical safety;

Multiple parallel stacking;

The Leading Patent Technology;

IP65 WaterProof;

Flexible Installation;

Simplify maintenance (user serviceable)

High Efficiency & Best Cost-Effectiveness

 

Images

KD-WVC295 Series Micro Inverter,High Efficiency & Best Cost-Effectiveness

KD-WVC295 Series Micro Inverter,High Efficiency & Best Cost-Effectiveness

KD-WVC295 Series Micro Inverter,High Efficiency & Best Cost-Effectiveness


 

 

 

 

Specification

Input Data

KD-WV250-120VAC/230VAC

  Recommended input power

200-300Watt

  Recommend the use of PV modules

300W/Vmp>34V/Voc<50v< span="">

  Maximum input DC voltage

50V

  Peak power tracking voltage

25-40V

  Operating Voltage Range

17-50V

  Min / Max start voltage

22-50V

  Maximum DC short current

15A

  Maximum Input Current

9.8A

  Output Data

@120VAC

@230VAC

  Peak power output

260Watt

260Watt

  Rated output power

250Watt

250Watt

  Rated output current

2.08A

0.92A

  Rated voltage range

80-160VAC

180-260VAC

  Rated frequency range

57-62.5Hz

47-52.5Hz

  Power factor

>96%

>96%

  Maximum units per branch circuit

15PCS(Single-phase)

30PCS(Single-phase)

  Output Efficiency

@120VAC

@230VAC

  Static MPPT efficiency

99.5%

99.5%

  Maximum output efficiency

92.3%

94.6%

  The average efficiency

91.2%

93.1%

  Night time power consumption

<50mW Max

<70mW Max

  THDI

<5%< span="">

<5%< span="">

  Exterior

  Ambient temperature

-40°C to +60°C

  Operating temperature range (inverter inside)

-40°C to +82°C

  Dimensions (WxHxD)

191mm*1176mm*38mm

  Weight

0.83kg

  Waterproof Rating

IP65

  Cooling

Self-cooling

  Feature

  Power transmission mode

Reverse transfer, load priority

  Electromagnetic compatibility

EN50081.part1EN50082.part1

  Grid disturbance

EN61000-3-2 Safety EN62109

  Grid detection

DIN VDE 1026 UL1741

  Certificate

CEC,CE National patent technology

 micro inverter

micro inverter

FAQ

Can we visit your factory?

Surely, I will arrange the trip basing on your business schedule.

Can you do OEM for us?

Yes, we can.

How do you pack your products?

We have rich experience on how to pack the panels to make sure the safety on shipment when it arrives at the destination.

Can you help us install the module if we cooperate with you?

We haven’t entered into installation sector, but we have the plan in near future.

 

Q: What is the role of a solar inverter in preventing system downtime?
The role of a solar inverter in preventing system downtime is crucial as it converts the direct current (DC) generated by solar panels into alternating current (AC) that can be used to power electrical devices. By regulating and stabilizing the electrical output, a solar inverter ensures that the system remains operational and prevents any potential disruptions or downtime. Additionally, modern solar inverters often come equipped with advanced features like monitoring capabilities, which allow for real-time identification and troubleshooting of any issues, further minimizing the risk of system downtime.
Q: How does a solar inverter handle grid synchronization during startup?
During startup, a solar inverter handles grid synchronization by first ensuring that the grid is stable and within acceptable voltage and frequency ranges. It then synchronizes its output voltage and frequency with the grid by monitoring its phase angle and adjusting it accordingly. This synchronization process allows the solar inverter to safely and seamlessly connect to the grid, ensuring smooth power transfer and operation.
Q: Can a solar inverter be used with a solar-powered backup generator?
Yes, a solar inverter can be used with a solar-powered backup generator. The solar inverter is responsible for converting the direct current (DC) generated by the solar panels into alternating current (AC) that can be used to power household appliances and electrical devices. When connected to a solar-powered backup generator, the solar inverter can efficiently regulate and distribute the electricity produced by the generator, providing a reliable and sustainable source of power.
Q: Can a solar inverter be used with different types of tracking algorithms?
Yes, a solar inverter can be used with different types of tracking algorithms. The primary function of a solar inverter is to convert the direct current (DC) generated by solar panels into alternating current (AC) that can be used in homes or businesses. Tracking algorithms, on the other hand, are responsible for optimizing the performance of solar panels by adjusting their orientation and tilt angles to maximize sunlight exposure. Solar inverters can integrate with various tracking algorithms to ensure efficient operation and improve energy generation.
Q: How does a solar inverter handle islanding detection and prevention?
A solar inverter handles islanding detection and prevention by continuously monitoring the electrical grid's stability. It utilizes anti-islanding protection mechanisms to detect any abnormal conditions, such as voltage fluctuations or frequency deviations, that may indicate the presence of an islanded grid. In the event of islanding, the inverter immediately disconnects from the grid to prevent energy feed-in and effectively isolate the solar system. This ensures the safety of utility workers, prevents damage to equipment, and helps maintain the stability of the overall electrical grid.
Q: How does a solar inverter prevent islanding?
A solar inverter prevents islanding by constantly monitoring the electrical grid's voltage and frequency. If it detects a disruption or deviation from the standard parameters, it immediately shuts down or disconnects from the grid to prevent energy from being fed back into the grid during a power outage. This ensures the safety of utility workers who might be working on the grid and prevents any damage to the electrical system.
Q: What is the maximum number of parallel inverters that can be installed in a solar system?
The maximum number of parallel inverters that can be installed in a solar system depends on various factors such as the capacity of the system, voltage limitations, and the specific requirements of the inverters being used. However, in general, there is no hard limit on the number of parallel inverters that can be installed as long as they are properly designed, coordinated, and meet the system's electrical specifications and safety standards.
Q: What is the maximum input voltage for a solar inverter?
The maximum input voltage for a solar inverter typically depends on the specific model and manufacturer. However, in general, solar inverters are designed to handle input voltages ranging from around 250 to 600 volts.
Q: What is the role of a solar inverter in preventing islanding?
The role of a solar inverter in preventing islanding is to continuously monitor the electrical grid and quickly disconnect from it if it detects any abnormalities or disruptions. This prevents the solar inverter from operating in an isolated or "islanded" mode, which could pose safety risks to utility workers and damage electrical equipment. By promptly disconnecting from the grid during such events, the solar inverter helps maintain the stability and integrity of the overall electrical system.
Q: How does a solar inverter affect the overall energy consumption of a property?
A solar inverter affects the overall energy consumption of a property by converting the direct current (DC) electricity produced by solar panels into alternating current (AC) electricity that can be used to power electrical appliances and equipment in the property. It ensures that the electricity generated by the solar panels is compatible with the property's electrical system, reducing the dependence on grid-supplied electricity. By efficiently converting solar energy into usable electricity, a solar inverter helps to lower the property's energy consumption from traditional sources and can potentially result in energy cost savings.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords