• Hot Rolled Channel Steel Bar U Channel JIS Q235 System 1
  • Hot Rolled Channel Steel Bar U Channel JIS Q235 System 2
  • Hot Rolled Channel Steel Bar U Channel JIS Q235 System 3
Hot Rolled Channel Steel Bar U Channel JIS Q235

Hot Rolled Channel Steel Bar U Channel JIS Q235

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT or LC
Min Order Qty:
50 m.t.
Supply Capability:
30000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Product Description:

OKorder is offering Hot Rolled Channel Steel Bar U Channel JIS Q235 at great prices with worldwide shipping. Our supplier is a world-class manufacturer of steel, with our products utilized the world over. OKorder annually supplies products to European, North American and Asian markets. We provide quotations within 24 hours of receiving an inquiry and guarantee competitive prices.

 

Product Applications:

Hot Rolled Channel Steel Bar U Channel JIS Q235 are ideal for structural applications and are widely used in the construction of buildings and bridges, and the manufacturing, petrochemical, and transportation industries.

 

Product Advantages:

OKorder's Hot Rolled Channel Steel Bar U Channel JIS Q235 are durable, strong, and resist corrosion.

 

Main Product Features:

·         Premium quality

·         Prompt delivery & seaworthy packing (30 days after receiving deposit)

·         Corrosion resistance

·         Can be recycled and reused

·         Mill test certification

·         Professional Service

·         Competitive pricing

 

Product Specifications:

Specifications of MS Channel:

1.We supply high quality MS Channel at reasonable price, including Chinese standard, Japanese standard and so on.

Standard

GB/JIS

Material Grade

Q235,SS400

Technique:

Hot Rolled

Sizes as per chinese standard:

50*37*4.5mm - 300*89*11.5mm

Sizes as per japanese standard:

50*25*3mm – 200*80*7.5mm

Length:

6meter, 9meter, 12meter

Note: 1.we are also competent to provide our customers other MS Channel based on other sizes according to customer’s requirements.

  2. The length of our ms channel could be cut into other meters as per customer’s requirements. For example, the channel in 6meters could be cut into 5.8meters in order to be fit in the 20ft container.

2. The detailed sections of MS Channel as per GB standard.are shown in the table-1:

GB U CHANNEL

Standard
h

Sectional
b

Dimension
s


t

Mass:
Kg/m

 

(mm)

(mm)

(mm)

(mm)

 

50X37

50

37

4.50

7.0

5.438

63X40

63

40

4.80

7.5

6.634

80x43

80

43

5.00

8.0

8.045

 

 

 

 

 

 

100x48

100

48

5.30

8.5

10.007

120x53

120

53

5.50

9.0

12.059

140x58

140

58

6.00

9.5

14.535

140x60

140

60

8.00

9.5

16.733

 

 

 

 

 

 

160x63

160

63

6.50

10.0

17.240

160x65

160

65

8.50

10.0

19.752

 

 

 

 

 

 

180x68

180

68

7.00

10.5

20.174

180x70

180

70

9.00

10.5

23.000

 

 

 

 

 

 

200x73

200

73

7.00

11.0

22.637

200x75

200

75

9.00

11.0

25.777

 

 

 

 

 

 

220x77

220

77

7.00

11.5

24.999

220x79

220

79

9.00

11.5

28.453

 

 

 

 

 

 

250x78

250

78

7.00

12.0

27.410

250x80

250

80

9.00

12.0

31.335

250x82

250

82

11.00

12.0

35.260

 

 

 

 

 

280x82

280

82

7.50

12.5

31.427

280x84

280

84

9.50

12.5

35.823

280x86

280

86

11.50

12.5

40.219

 

 

 

 

 

 

300x85

300

85

7.50

13.5

34.463

300x87

300

87

9.50

13.5

39.173

300x89

300

89

11.50

13.5

43.883

Table-1

3. The chemical composition of HR Channel Steel according to Q235B is shown in Table-2.

Alloy No

Grade

Element(%)

C

Mn

S

P

Si

Q235

B

0.12-0.20

0.3-0.7

≦0.045

≦0.045

≦0.3

Table-2

Note: we are able to present our customers relevant SGS test report for chemical composition of HR Channel Steel.

4. The mechanical property of HR Channel Steel according to Q235B is shown in Table-3-1 and Table-3-2

Alloy No

Grade

Yielding Strength Point(Mpa)

Thickness(mm)

≦16

>16-40

>40-60

>60-100

Q235

B

235

225

215

205

                                         Table-3-1

Alloy No

Grade

Tensile Strength(Mpa)

Elongation After Fracture(%)

Thickness(mm)

≦16

>16-40

>40-60

>60-100

G235

B

375-500

26

25

24

23

                                          Table-3-2

Note: we are able to present our customers relevant SGS test report for mechanical property of MS Channel as customer’s request.

Applications of MS Channel:

The MS Channel can be applied to construction of warehouses, workshops, sport stadiums and car parks etc.The hot rolled channel steel belongs to carbon structural steel which is applied to in the field of construction and machinery.In details, the hot rolled channel steel is usually used for arch-itechtural structure, and they could be welded in order to support or hang a vari-ety of facilities. They are also usually used in combination with I beam. Generally,the hot rolled channel steel we supply must possess perfect welding property, riveting property and mechanical property and so on.

Package & Delivery of MS Channel:

1.The hot rolled channel steel will be packed in bundle with steel wire at each end of every bundle and color marking in order to help the customer to recognize his goods more easily at sight.

2. And the hot rolled channel steel could be loaded into 20ft or 40ft container, or by bulk cargo.If the weight of each bundle reaches more than 3.5 mt, the loading by break bulk cargo should be choosed.When the weight of each bundle reaches less than 3mt, the loading by container should be choosed.

3.As for the transportaion from mill to loading port, the truck will be usually used. And the maximum quantity for each truck is 40mt.

4.All in all, we could do in accordance with customer's request

 

FAQ:

Q1: Why buy Materials & Equipment from OKorder.com?

A1: All products offered byOKorder.com are carefully selected from China's most reliable manufacturing enterprises. Through its ISO certifications, OKorder.com adheres to the highest standards and a commitment to supply chain safety and customer satisfaction.

Q2: How do we guarantee the quality of our products?

A2: We have established an advanced quality management system which conducts strict quality tests at every step, from raw materials to the final product. At the same time, we provide extensive follow-up service assurances as required.

Q3: How soon can we receive the product after purchase?

A3: Within three days of placing an order, we will begin production. The specific shipping date is dependent upon international and government factors, but is typically 7 to 10 workdays.

Q4: What makes stainless steel stainless?

A4: Stainless steel must contain at least 10.5 % chromium. It is this element that reacts with the oxygen in the air to form a complex chrome-oxide surface layer that is invisible but strong enough to prevent further oxygen from "staining" (rusting) the surface. Higher levels of chromium and the addition of other alloying elements such as nickel and molybdenum enhance this surface layer and improve the corrosion resistance of the stainless material.

Q5: Can stainless steel rust?

A5: Stainless does not "rust" as you think of regular steel rusting with a red oxide on the surface that flakes off. If you see red rust it is probably due to some iron particles that have contaminated the surface of the stainless steel and it is these iron particles that are rusting. Look at the source of the rusting and see if you can remove it from the surface.

 

Images:

Q: The above four should be all types of steel, but what is the relationship between H steel and I-beam, C section steel and channel steel?Is the I-beam included in the H section, or is it all the same?
In the case of the same amount of steel, H steel can do more rigidity and stability than I-beam, and its resistance to bending and bending is better than that of I-beam
Q: How do steel channels contribute to the stability of mezzanine floors?
Steel channels contribute to the stability of mezzanine floors by providing structural support and reinforcement. These channels are typically used as beams or joists, and they help distribute the weight and load across the entire floor structure. By adding strength and rigidity, steel channels enhance the overall stability and durability of the mezzanine floor, ensuring it can safely bear the required weight and withstand any potential impacts or vibrations.
Q: 28a difference between channel steel and 28b channel steel
180×70×9 18 # B 23200×73 * 7 20 #的22.637200×75×9 20 # B 25.777* * 220 77 7 22 #的24.999220 * * 79 9 22 # B 28.453* * 240 78 7 24 #的26.86240 * * 80 9 24 # B 30.628
Q: Channel 12, span 5 meters, how much weight can be carried?
Some of the basic parameters of the 20b channel check (per unit length, weight g, section modulus W), check the "mechanical design manual" g=25.77kg/m=0.2577kg/cm W=191.4cm fand.
Q: How do steel channels contribute to earthquake resistance in buildings?
Steel channels contribute to earthquake resistance in buildings in several ways. Firstly, steel channels are commonly used as structural members in building frames. They provide strength and rigidity to the overall structure, which helps to resist the lateral forces generated during an earthquake. These lateral forces, also known as seismic forces, can cause buildings to sway and deform. By using steel channels, the building's frame becomes more resistant to these forces, reducing the risk of collapse. Secondly, steel channels can be strategically placed in key areas of the building to enhance its seismic performance. For example, they can be used as braces or shear walls to provide additional support and stability. Bracing systems made of steel channels help to distribute the seismic forces throughout the structure, preventing concentrated stress points and improving overall structural integrity. Moreover, steel channels can be integrated into the foundation of the building to enhance its resilience against ground motion during an earthquake. By connecting the foundation to the superstructure using steel channels, the building's ability to absorb and dissipate seismic energy is improved. This helps to minimize the transfer of forces to the building, reducing the potential for damage. Additionally, steel channels offer ductility, which is crucial for earthquake resistance. Ductility refers to the ability of a material to deform without breaking. During an earthquake, buildings experience significant stress and deformation. Steel channels have the capacity to absorb this energy and deform without losing their structural integrity. This ductile behavior prevents sudden failure and allows the building to undergo controlled and controlled deformation, thereby enhancing its overall seismic performance. In conclusion, steel channels play a vital role in enhancing earthquake resistance in buildings. Their strength, rigidity, strategic placement, integration into the foundation, and ductility all contribute to improving the structural integrity and resilience of a building during seismic events. By incorporating steel channels into the design and construction of buildings, the risk of collapse and damage due to earthquakes can be significantly reduced.
Q: What are the different loadings that steel channels can withstand?
Steel channels can withstand various loadings, including static loads, dynamic loads, and impact loads. The specific load capacity depends on factors such as the size, shape, and material grade of the steel channel. The loadings can range from lighter loads, such as those experienced in residential construction, to heavier loads in industrial or commercial applications. It is important to consider engineering specifications and safety codes to determine the appropriate loadings for steel channels in different applications.
Q: Excuse me, when the high voltage cabinet is installed, should the base channel (10#) be placed upright or upside down? Are there any rules?
Product orders should be selected two designated certification manufacturers, equipment orders are advised by the installation conditions when the equipment has arrived, after entering, should be stored in the field equipment storehouse, the party was invited to check out of the box, factory technical documents shall be complete, types and specifications should comply with the design requirements, complete accessories and spare parts. The appearance of the cabinet shall be free from damage and deformation, and the paint shall be complete and undamaged. The inner parts of the cabinet, electrical equipment and components, insulating porcelain parts shall be complete, without damage and cracks.
Q: What's the name of channel steel?
Channel only classification, no alias.Such as: waist height is the same, leg width and waist thickness of different, you can have a, B, C three models.
Q: What are the different load distribution techniques for steel channels in roof systems?
There are several load distribution techniques that can be used for steel channels in roof systems. These techniques help to ensure that the weight and forces exerted on the channels are evenly distributed, reducing the risk of structural failure. One common load distribution technique is the use of purlins. Purlins are horizontal beams that are placed on top of the steel channels, providing additional support and distributing the load more evenly. These purlins can be made of steel, wood, or other materials, depending on the specific requirements of the roof system. Another technique is the use of bridging. Bridging refers to the installation of vertical or diagonal braces between the steel channels to prevent them from twisting or buckling under heavy loads. This technique helps to distribute the load across multiple channels, increasing their overall strength and stability. Additionally, the spacing of the steel channels themselves can also affect load distribution. Increasing the spacing between channels can help to distribute the load more evenly, as it reduces the concentration of weight on individual channels. However, it is important to ensure that the spacing is within the recommended guidelines to maintain structural integrity. Furthermore, the use of load-bearing walls or columns can also contribute to load distribution in roof systems. By providing additional support at specific points along the channels, these load-bearing elements help to distribute the load and prevent excessive stress on individual channels. In summary, the different load distribution techniques for steel channels in roof systems include the use of purlins, bridging, proper spacing of channels, and the incorporation of load-bearing elements. These techniques work together to ensure that the weight and forces exerted on the channels are evenly distributed, reducing the risk of structural failure and ensuring the long-term durability of the roof system.
Q: Can steel channels be used in manufacturing equipment?
Yes, steel channels can be used in manufacturing equipment. Steel channels, also known as C-channels or U-channels, are popular structural components in various industries due to their strength and versatility. They are commonly used to create frames, supports, and structures for machines and equipment. Steel channels provide stability and rigidity, making them suitable for handling heavy loads and withstanding dynamic forces during the manufacturing process. Additionally, steel channels can be easily welded, bolted, or fastened together, allowing for flexible and efficient construction of equipment. Overall, steel channels are a reliable choice for manufacturing equipment due to their durability, strength, and ease of use.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords