• Grid tie solar inverter 2500W System 1
  • Grid tie solar inverter 2500W System 2
Grid tie solar inverter 2500W

Grid tie solar inverter 2500W

Ref Price:
get latest price
Loading Port:
Shekou
Payment Terms:
TT OR LC
Min Order Qty:
-
Supply Capability:
-

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Grid tie solar inverter 2500W

  ◆ Compact size and high power density

  ◆ High speed MPPT for real time power tracking and improved energy harvesting

  ◆ Transformerless operation for highest efficiency 97%

  ◆ High overload capability under most ambient conditions

  ◆ Certified grid connected operation according to the international standards

  ◆ True sine wave output

  ◆ Integrated RS485/RS232 serial communications

  ◆ Multi-language LCD display


MODEL1100TL1500TL2000TL2500TL3000TL3600TL5000TL6000TL
Max. DC Input Power(W)12001750230027003660375053006400
Max DC Voltage(Vdc)450450500550
MPPT Operating Range(Vdc)60~450100~450100~500
Number of Parallel Inputs123
Number of MPPT Trackers1
Max. Input Current(A)11.7101314.5202022.527.5
Nominal Output Power(W)11001500200024903000360046006000
Max. Output Power(W)11001650220024903400360050006000
Nominal Output Current(A)4.86.58.710.81315.72026
Max. Output Current(A)5.77.910.51215.7162429.3
Nominal AC Output Voltage(Vac)230
AC Output voltage range (Vac)*190~265
AC Grid frequency range (Hz)*50±5
Power Factor (cosφ)>0.99
THDI<3%(at nominal output power)
Max.efficiency96.50%96.50%97.00%97.10%97.20%97.30%97.40%97.40%
Euro.efficiency95.40%95.50%96.20%96.30%96.40%96.60%96.80%96.80%
MPPT. efficiency99.60%99.60%99.60%99.60%99.60%99.60%99.60%99.60%
Operating Temperature()-25~+60
Noise typical[dB(A)]≤20dB(A)
Operating Consumption(W)0
Electrical IsolationTransformerless
Cooling ConceptNatural cooling
Protect LevelIP65
CommunicationRS232(WiFi optional)
Dimension (W×D×H)(mm)345*152*315345*152*355345*152*385345*152*505345*162*573
Weight (Kg)1213151924
*AC grid voltage range and frequency range depend on local standards



Q: What is the role of a display interface in a solar inverter?
The role of a display interface in a solar inverter is to provide real-time information and control options to the user. It allows the user to monitor and understand the performance of the solar inverter, such as the amount of energy being generated, the status of the system, and any potential issues. The display interface also enables the user to adjust and optimize the settings of the inverter, such as voltage and frequency, to ensure efficient operation. Overall, the display interface enhances the user experience by providing visibility and control over the solar inverter's functions.
Q: What is the role of an anti-islanding function in a solar inverter?
The role of an anti-islanding function in a solar inverter is to ensure the safety of utility workers and prevent damage to the grid. It detects when there is a loss of connection to the grid and immediately shuts down the inverter, preventing it from continuing to supply power to the grid during a power outage. This is crucial because it prevents a potential dangerous situation called islanding, where the inverter continues to generate power and creates a false grid, posing risks to utility workers who may be working on the grid. By shutting down the inverter during an outage, the anti-islanding function helps maintain the stability and integrity of the electrical grid.
Q: What is the operating temperature range of a solar inverter?
The operating temperature range of a solar inverter typically falls between -20°C to 50°C (-4°F to 122°F), although this can vary depending on the specific model and manufacturer.
Q: What is the role of a solar inverter in protecting the electrical grid?
The role of a solar inverter in protecting the electrical grid is to convert the direct current (DC) electricity produced by solar panels into alternating current (AC) electricity that is compatible with the grid. It ensures that the solar power generated is synchronized with the grid's voltage and frequency, allowing for seamless integration and preventing any disruptions or voltage fluctuations that could potentially harm the grid. Additionally, solar inverters have built-in safety mechanisms such as anti-islanding protection, which disconnects the solar system from the grid during a power outage, ensuring the safety of utility workers who may be working on the grid. Overall, solar inverters play a crucial role in ensuring the stability, reliability, and safety of the electrical grid when incorporating solar energy.
Q: Can a solar inverter be used in remote locations?
Yes, solar inverters can be used in remote locations. They are designed to convert the direct current (DC) generated by solar panels into alternating current (AC) that can be used to power electrical devices. Solar inverters are versatile and can be installed and operated in various settings, including remote locations where grid electricity is not available. These inverters allow for the utilization of solar energy in off-grid areas, making them an ideal choice for powering remote homes, cabins, or other facilities.
Q: What is the maximum voltage input for a solar inverter?
The maximum voltage input for a solar inverter typically depends on the specific model and manufacturer. However, in general, it ranges from around 600 to 1000 volts, with some higher-end models able to handle higher voltages.
Q: What is the role of a solar inverter in a solar-powered telecommunications system?
The role of a solar inverter in a solar-powered telecommunications system is to convert the direct current (DC) produced by the solar panels into alternating current (AC) that can be used to power the telecommunications equipment. It also ensures that the AC power is stable and at the necessary voltage and frequency for the proper functioning of the system.
Q: Can a solar inverter be used with a wireless communication system?
Yes, a solar inverter can be used with a wireless communication system. In fact, many modern solar inverters are designed with built-in wireless communication capabilities to allow for monitoring and control of the system remotely. This enables users to access real-time data, adjust settings, and receive notifications about the performance of their solar power system through a wireless connection, such as Wi-Fi or cellular networks.
Q: Can a solar inverter be used with a grid-tied system and a battery backup?
Yes, a solar inverter can be used with a grid-tied system and a battery backup. In this setup, the solar inverter will convert the DC power generated by the solar panels into AC power, which can be used to power your home or business. The excess power can be fed back into the grid, earning credits or reducing your electricity bill. Additionally, a battery backup system can be connected to the solar inverter, allowing the excess solar energy to be stored in batteries for later use during power outages or when the grid is not available.
Q: How much maintenance is required for a solar inverter?
Solar inverters typically require minimal maintenance. Most modern inverters are designed to be reliable and durable, requiring little to no maintenance throughout their lifespan. However, occasional cleaning of the inverter's vents and ensuring proper ventilation can help optimize its performance. Additionally, monitoring the inverter's performance and checking for any error messages or unusual behavior can help identify and address any potential issues. Overall, the maintenance required for a solar inverter is generally minimal, making it a low-maintenance component of a solar system.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords