• ERW Welded Steel Pipes For Bicycle System 1
  • ERW Welded Steel Pipes For Bicycle System 2
  • ERW Welded Steel Pipes For Bicycle System 3
ERW Welded Steel Pipes For Bicycle

ERW Welded Steel Pipes For Bicycle

Ref Price:
get latest price
Loading Port:
China Main Port
Payment Terms:
TT or L/C
Min Order Qty:
50MT m.t.
Supply Capability:
based on order m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

ERW Welded Steel Pipes

Application of ERW Welded Steel Pipes For Bicycle

It is widely applied to line pipe and casing and tubing in oil transportation and casing field, and it is used in Low,high pressure liquid and gassy transportation and it is also good Structure pipe (for furniture, window, door, building , bridge, mechanical etc).

Package: bundles with anti-rust painting and with plastic caps

Standard of of ERW Welded Steel Pipes For Bicycle

API SPEC 5L, API SPEC 5CT, ASTM A53, GB/T9711.1

Steel Grade of of ERW Welded Steel Pipes For Bicycle

API SPEC 5L: B, X42, X46, X52, X56, X60, X65

API SPEC 5CT: J55, K55, N80, L80-1

ASTM A53: A, B, C

GB/T9711.1:L242L290L320L360L390L415L450

Sizes of ERW Welded Steel Pipes For Bicycle

*Remark: Besides below sizes, we also can arrange production based on requirement of customers

OD

WT

WEIGHT

INCH

MM

SCH

MM

INCH

KG/M

LB/INCH

1 1/2”

48.3

STD-40

3.68

0.145

4.09

2.75

1 1/2”

48.3

XS-80

5.08

0.2

5.47

3.68

2”

60.3

STD-40

3.91

0.154

5.49

3.69

2”

60.3

XS-80

5.54

0.218

7.56

5.08

2 1/2”

73

STD-40

5.16

0.203

8.72

5.86

2 1/2”

73

XS-80

7.01

0.276

11.52

7.74

3”

88.9

STD-40

5.49

0.216

11.41

7.67

3”

88.9

XS-80

7.62

0.3

15.43

10.37

3 1/2”

101.6

STD-40

5.74

0.226

13.71

9.21

3 1/2”

101.6

XS-80

8.08

0.318

18.83

12.65

4”

114.3

STD-40

6.02

0.237

16.24

10.91

4”

114.3

XS-80

8.56

0.337

22.55

15.15

5”

141.3

STD-40

6.55

0.258

21.99

14.78

5”

141.3

XS-80

9.53

0.375

31.28

21.02

6”

168.3

STD-40

7.11

0.28

28.55

19.19

6”

168.3

XS-80

10.97

0.432

42.99

28.89

8”

219.1

STD-40

8.18

0.322

42.98

28.88

8”

219.1

XS-80

12.7

0.5

65.3

43.88

10”

273

STD-40

9.27

0.365

60.9

40.92

10”

273

80

15.09

0.594

96.95

65.15

12”

323.8

STD

9.53

0.375

74.61

50.13

12”

323.8

40

10.31

0.406

80.51

54.1

12”

323.8

XS

12.7

0.5

98.42

66.14

12”

323.8

80

17.48

0.688

133.38

89.63

14”

355.6

40

11.13

0.438

95.51

64.18

14”

355.6

XS

12.7

0.5

108.48

72.9

14”

355.6

80

19.05

0.75

159.71

107.32

16”

406.4

XS-40

12.7

0.5

124.55

83.69

18”

457

STD

9.53

0.375

106.23

71.38

18”

457

40

14.27

0.562

157.38

105.75

18”

457

80

23.83

0.938

257.13

172.78

20”

508

40

15.09

0.594

185.28

124.5

20”

508

80

26.19

1.031

314.33

211.22

Standard: GB/9711.1

Mechanical Pr

Standard

Grade

MPa

MPa

Min(%)

Yield strength

Tensile Strength

Elongation

GB/T9711.1

L245

≥245

≥415

21

L290

≥290

≥415

21

L320

≥320

≥435

20

L360

≥360

≥460

19

L390

≥390

≥490

18

L415

≥415

≥520

17

L450

≥450

≥535

17

L485

≥485

≥570

17

Chemical Composition(%)

Standard

Grade

C

Mn

P

S

Max

Max

Max

Max

GB/T9711.1

L245

0.26

0.15

0.030

0.030

L290

0.28

1.25

0.030

0.030

L320, L360

0.30

1.25

0.030

0.030

L390, L415

0.26

1.35

0.030

0.030

L450

0.26

1.40

0.030

0.030

L485

0.23

1.60

0.025

0.030

Standard: GB/9711.2

Mechanical Properties

Standard

Grade

MPa

Yield strength

MPa

Tensile Strength

Min(%)

Elongation

GB/T9711.2

Rt0.5Min

Rt0.5Max

RmMin

Rt0.5/Rm Max

L245

 

245

 

440

0.80

 

22

L245

0.85

L290

 

290

 

440

0.80

21

L290

0.85

L360

 

360

 

510

0.85

 

20

L360

0.85

L415

 

415

 

565

0.85

 

18

L415

0.85

L450

450

570

535

0.87

18

L485

485

605

570

0.90

18

 

Chemical Composition (%)

Standard

Grade

C

Mn

P

S

V

Nb

Ti

CEV

Max

Max

Max

Max

Max

Max

Max

Max

GB/T9711.2

L245NB

0.16

1.1

0.025

0.020

-

-

-

0.42

L290NB

0.17

1.2

0.025

0.020

0.05

0.05

0.04

0.42

L360NB

0.20

1.6

0.025

0.020

0.10

0.05

0.04

0.45

L415NB

0.21

1.6

0.025

0.020

0.15

0.05

0.04

-

L245NB, L290NB

 

0.16

 

1.5

0.025

0.020

 

0.04

 

0.04

 

-

 

0.4

L360NB

0.16

1.6

0.025

0.020

0.05

0.05

0.04

0.41

L415NB

0.16

1.6

0.025

0.020

0.08

0.05

0.06

0.42

L450NB

0.16

1.6

0.025

0.020

0.10

0.05

0.06

0.43

L485NB

0.16

1.7

0.025

0.020

0.10

0.06

0.06

0.43

Standard: ASTM A53

Mechanical Properties

Standard

Grade

MPa

MPa

Yield strength

Tensile Strength

ASTM A53M

A

205

330

B

240

415

 Chemical Composition(%)

Standard

Grade

C

Mn

P

S

V

Ni

Cu

Cr

Mo

Max

Max

Max

Max

Max

Max

Max

Max

Max

ASTM A53M

A

0.25

0.95

0.05

0.045

0.08

0.4

0.5

0.4

0.15

B

0.30

1.20

0.05

0.045

0.08

0.4

0.5

0.4

0.15

ERW Welded Steel Pipes For Bicycle

ERW Welded Steel Pipes For Bicycle

Q: How are steel pipes used in the automotive manufacturing industry?
Steel pipes are commonly used in the automotive manufacturing industry for various purposes such as exhaust systems, fuel lines, and structural components. They provide durability, strength, and resistance to high temperatures, making them ideal for these applications.
Q: Can steel pipes be used for underground cable conduits?
Yes, steel pipes can be used for underground cable conduits.
Q: How do you determine the weight per foot of a steel pipe?
To determine the weight per foot of a steel pipe, you need to consider two main factors: the thickness and the diameter of the pipe. First, you need to measure the outer diameter (OD) and the wall thickness (WT) of the pipe using a caliper or a measuring tape. Once you have these measurements, you can calculate the inner diameter (ID) by subtracting twice the wall thickness from the outer diameter (ID = OD - 2 * WT). Next, use the formula for the cross-sectional area of a pipe (A = π * (OD^2 - ID^2) / 4) to calculate the cross-sectional area. Finally, multiply the cross-sectional area by the density of the steel, which is typically around 490 pounds per cubic foot, to determine the weight per foot of the steel pipe. Weight per foot (WPF) = A * 490 It's important to note that this calculation provides an estimate of the weight per foot, as manufacturing tolerances and slight variations in the density of the steel may affect the actual weight. Therefore, it is recommended to use this calculation as a guide and consult the manufacturer's specifications for more precise information.
Q: How are steel pipes recycled at the end of their life cycle?
Steel pipes are typically recycled at the end of their life cycle through a process called steel recycling. This involves collecting the used pipes, separating them from other materials, and then melting them down to be formed into new steel products. The recycling process not only helps conserve valuable resources but also reduces the need for new steel production, making it an environmentally sustainable solution.
Q: How do you determine the maximum allowable stress for steel pipes?
In order to establish the maximum allowable stress for steel pipes, several factors must be taken into account. These factors encompass the type of steel, the dimensions of the pipe, and the operating conditions it will be exposed to. To begin with, the type of steel chosen is a pivotal aspect in determining the maximum allowable stress. Different steel grades possess distinct mechanical properties, including yield strength, tensile strength, and elongation. These properties define the steel's capacity to withstand stress before deforming or failing. Hence, it is crucial to comprehend the specific grade of steel employed in the pipes to ascertain the maximum allowable stress. Additionally, the dimensions of the pipe are of utmost importance. The external diameter, wall thickness, and length all impact the pipe's strength and ability to handle stress. By calculating the cross-sectional area and moment of inertia, engineers can evaluate the pipe's resistance to bending and axial stresses. These calculations, combined with the material properties, facilitate the determination of the maximum allowable stress. Finally, the operating conditions under which the pipe will be utilized play a critical role. Variables such as temperature, pressure, and the presence of corrosive substances can significantly influence the maximum allowable stress of a steel pipe. Elevated temperatures can alter the mechanical properties of the steel, while high pressures can induce additional stress. Furthermore, the presence of corrosive substances can lead to material degradation and diminish the pipe's strength. Thus, considering these operational factors is essential when determining the maximum allowable stress. To summarize, the process of establishing the maximum allowable stress for steel pipes entails assessing the specific steel grade, the pipe's dimensions, and the operating conditions. By analyzing these factors, engineers can ensure that the steel pipe is designed and utilized within its safe stress limits.
Q: What is the difference between the stainless steel pipe welded pipe and seamless pipe?
Welding performance: chemical composition of seamed pipe and seamless pipe are different. The production of seamless steel components only meets the basic requirements of astm. The production of seamed tube steel containing suitable for chemical composition of welding. For example, the mixing of silicon, sulfur, manganese, oxygen, and a certain proportion of elements such as the triangle ferrite can produce a welding flux which is easy to transfer heat during welding, so as to make the whole weld be welded well. The lack of steel pipe above the chemical components, such as seamless tube, can produce all kinds of unstable factors in the process of welding, welding and welding penetration is not easy.
Q: How do you calculate the pipe flow rate coefficient for steel pipes?
To calculate the pipe flow rate coefficient for steel pipes, you can use the Darcy-Weisbach equation, which takes into account the pipe diameter, length, roughness factor, and the fluid properties such as viscosity and density. By rearranging the equation and solving for the flow rate coefficient, you can determine the value using empirical correlations or by conducting experimental tests under controlled conditions.
Q: Steel pipe is particularly long, how to clean the inner wall of the pipe so that it can be thoroughly cleaned
High cleanliness requirements for ultrasonic cleaningUltrasonic cleaning principle: the pressure change of ultrasonic wave propagation in the liquid in the liquid cavitation phenomenon strongly, per second produced millions of tiny gas bubbles, these bubbles rapidly in large pressure under the action of not following the violent explosion, impact force and produce strong suction, enough to make the stubborn dirt quickly stripped.
Q: Can steel pipes be used for underground drainage?
Yes, steel pipes can be used for underground drainage. Steel pipes are commonly used for underground drainage systems due to their durability, strength, and resistance to various elements, such as soil erosion, chemical corrosion, and high pressure. However, it is important to consider factors like the type of soil, environmental conditions, and the specific requirements of the drainage system before deciding on the material for underground drainage pipes.
Q: What are the common grades of steel used in pipes?
The common grades of steel used in pipes include carbon steel, stainless steel, and alloy steel.
All these steel pipes are suitable for the industries of oil, natural gas,ship building,chemical, environmental protection,boiler, water conservancy, electrical industry,steel structure, building and other related fields.

1. Manufacturer Overview

Location Tianjin, China
Year Established 1997
Annual Output Value Above Three Million To Five Million RMB
Main Markets Main land
Company Certifications ISO 9001:2010;API 5L;

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a) Trade Capacity
Nearest Port Tianjin
Export Percentage 40% - 50%
No.of Employees in Trade Department 300-500 People
Language Spoken: English; Chinese
b) Factory Information
Factory Size: 40,000 square meters
No. of Production Lines Above 10
Contract Manufacturing OEM Service Offered; Design Service Offered
Product Price Range Average

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords