• CNBM-1500TL Solar Inverter Off Grid System 1
  • CNBM-1500TL Solar Inverter Off Grid System 2
  • CNBM-1500TL Solar Inverter Off Grid System 3
  • CNBM-1500TL Solar Inverter Off Grid System 4
  • CNBM-1500TL Solar Inverter Off Grid System 5
  • CNBM-1500TL Solar Inverter Off Grid System 6
CNBM-1500TL Solar Inverter Off Grid

CNBM-1500TL Solar Inverter Off Grid

Ref Price:
get latest price
Loading Port:
Shanghai
Payment Terms:
TT OR LC
Min Order Qty:
1000 watt
Supply Capability:
100000000 watt/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

1.Features of the Solar Inverter

 

  1. Maximum efficiency of 97.8% and wide input voltage range

  2. Internal DC switch

  3. MTL-String

  4. Sound control

  5. Bluetooth/RF technology/WF-Fi

  6. Transformerless GT topology

2.Data sheet of the Solar Inverter

  

ModelCNBM-1500TL
Input data (DC)
Max. DC power1800W
Max. DC voltage450V
PV Voltage Range100V~450V
Max.input current10A
Number of MPP trackers/strings per1/1
MPP tracker

 

OUTPUT (AC)
Rated AC output power1600W
Max AC power1650W
Max output current8A
Power Factor1
THDI<3%
AC connectionSingle phase

 

Efficiency
Max efficiency97%
Euro weighted efficiency96.5%
MPPT efficiency99.5%
Protection devices
Output  over voltage protection varistoryes
Ground fault monitoringyes
Grid monitoringyes

  

GENERAL Data

Dimensions, D X W X H (mm)

360x329x132
Weight (kgs)11.5
Operating temperature range-25℃...+60℃
Altitude2000m(6560ft)without derating
Self Consumption night<0.5W
TopologyTransformerless
Cooling conceptNatural
EnvironmentalIP65
Protecting Rating

 

Features
DC connectionH4/MC4(opt)
DisplayLCD
Interfaces:RS485/RS232/Bluetooth/RF/Zigbee/Wifiyes/yes/opt/opt/opt/opt
Warranty:5 years/10 yearsyes/opt
Certificates and approvalsCE.VDE 0216-1-1.DK5940.G83/1-1.G59/2.RD1663.EN50438.CEL-021.ICE-62109.ENEL-Guide

3.Applications of the Solar Inverter

Inverter not only has direct communication transform function, but also has the maximum limit to carry on the function of the solar cell function and system fault maintenance function. In the aggregate, have active operation and shutdown function, maximum power tracking control function, prevent operation function alone (grid system use), the active voltage adjustment functions (grid system use), dc testing functions (grid system use), dc grounding detection function (grid system use) 

 

4.IMages of the Solar Inverter

 

Grid tie Solar Inverter CNBM-1500TL Solar Inverter

Grid tie Solar Inverter CNBM-1500TL Solar Inverter

Grid tie Solar Inverter CNBM-1500TL Solar Inverter

 

FAQ

Q: Do you have the CE, TUV, UL Certification?

A: We’ve already passed all the tests, and any certificate is available.

Q: Have you ever sold your products to companies in my country?

A: Of course, we have customers in all general PV markets, but I think we should expand our market share along with the market growth.

Q: When did your company set up?  You are a new company, how can I believe your quality?

A: We entered into Solar PV industry in 2005, now we have several plants in manufacturing of a-Si and c-Si panels, and our capacity is 220MW per year. Till now we have already passed all the tests by authorized laboratories, e.g. TUV, CE, UL.

Q: Can you help us install the module if we cooperate with you?

A: We haven’t entered into installation sector, but we have the plan in near future.

Q: How do you pack your products?

A: We have rich experience on how to pack the panels to make sure the safety on shipment when it arrives at the destination.

Q: Can you do OEM for us?

A: Yes, we can.

Q: Can we visit your factory?

A: Surely, I will arrange the trip basing on your business schedule.

 

Q: Can a solar inverter be used with a backup generator?
Yes, a solar inverter can be used with a backup generator. In fact, this combination can provide a reliable and efficient power supply. The solar inverter converts the DC power generated by solar panels into usable AC power, while the backup generator can be used to supplement power during times when solar energy is insufficient or unavailable. This setup allows for a more sustainable and uninterrupted power supply.
Q: Can a solar inverter be easily integrated into an existing electrical system?
Yes, a solar inverter can be easily integrated into an existing electrical system. It can be connected to the main electrical panel to convert the DC power generated by solar panels into AC power that can be used to power appliances and devices in the building. However, it is important to consult with a professional electrician to ensure proper installation and compatibility with the existing system.
Q: What happens to excess solar energy generated by the inverter?
Excess solar energy generated by the inverter can either be stored in batteries for later use or fed back into the grid, depending on the setup.
Q: How long does it take to install a solar inverter?
The installation time for a solar inverter can vary depending on various factors such as the size of the system, complexity of the installation, and the expertise of the installer. Generally, it can take anywhere from a few hours to a full day to complete the installation process.
Q: How long does a solar inverter last?
A solar inverter typically has a lifespan of around 10 to 15 years, although this can vary depending on various factors such as the quality of the inverter, its usage, and maintenance.
Q: What are the advantages of using a solar inverter?
There are several advantages of using a solar inverter. Firstly, solar inverters convert the direct current (DC) generated by solar panels into alternating current (AC), which is the type of electricity used in most homes and businesses. This allows for the seamless integration of solar power into the existing electrical grid. Secondly, solar inverters optimize the performance of solar panels by constantly monitoring and adjusting the voltage and current levels. This ensures that the panels are operating at their maximum power output, resulting in higher energy efficiency and increased electricity production. Moreover, solar inverters enable net metering, which allows excess solar energy to be fed back into the grid, effectively spinning the electricity meter backward. This can lead to significant savings on electricity bills or even generate income through feed-in tariffs. Additionally, solar inverters offer advanced monitoring capabilities, allowing homeowners and system operators to track the energy production and performance of their solar systems in real-time. This data enables better system maintenance, troubleshooting, and optimization. Lastly, solar inverters contribute to a cleaner and more sustainable energy future by reducing dependence on fossil fuels and minimizing greenhouse gas emissions. They play a crucial role in harnessing the power of the sun to generate clean, renewable energy.
Q: How does a solar inverter handle sudden changes in solar irradiation?
A solar inverter handles sudden changes in solar irradiation by continuously monitoring the incoming solar energy and adjusting its output accordingly. When there is a sudden increase in solar irradiation, the inverter quickly ramps up its power conversion to match the higher energy input. Similarly, when there is a sudden decrease in solar irradiation, the inverter reduces its power conversion to align with the lower energy input. This dynamic response ensures that the inverter efficiently converts the available solar energy into usable electricity, maintaining a stable power output despite fluctuations in solar irradiation.
Q: How does a microinverter differ from a string inverter?
A microinverter differs from a string inverter in that it is a small, individual inverter that is connected to each solar panel in a system, whereas a string inverter is a larger inverter that is connected to multiple panels in a series (string). This means that each panel with a microinverter can operate independently, optimizing the power output of each panel, while a string inverter operates based on the performance of the entire string of panels. Microinverters also allow for easier monitoring and maintenance as the performance of each panel can be individually tracked, whereas with a string inverter, any issues affecting one panel can impact the output of the entire string.
Q: Can a solar inverter be used with a solar-powered telecommunications system?
Yes, a solar inverter can be used with a solar-powered telecommunications system. A solar inverter is essential in converting the direct current (DC) generated by solar panels into alternating current (AC) required for powering telecommunication equipment. This ensures efficient and reliable operation of the system by enabling the utilization of solar energy to power the telecommunications infrastructure.
Q: How does a solar inverter handle voltage sags and swells?
A solar inverter handles voltage sags and swells by continuously monitoring the voltage levels of the grid. When it detects a voltage sag (a drop in voltage below a certain threshold) or a voltage swell (a sudden increase in voltage above a certain threshold), the inverter adjusts its operation to compensate for the deviation. It can either decrease or increase the power output to ensure that the electricity being fed into the grid remains within acceptable voltage limits. This helps to stabilize the grid and protect connected devices from potential damage.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords