• Calcined Pitch Coke with Ash 0.5 percent max used in EAF System 1
  • Calcined Pitch Coke with Ash 0.5 percent max used in EAF System 2
Calcined Pitch Coke with Ash 0.5 percent max used in EAF

Calcined Pitch Coke with Ash 0.5 percent max used in EAF

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
21 m.t.
Supply Capability:
8000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

 

Introduction

Pitch Coke/Coal Tar Pitch is a kind of black brittleness and blocky piece, lustrously at normal temperature. It has special odour and poisonous and can be easily flame when melting, second-grade inflammable solid.

 Pitch Coke/Coal Tar Pitch is obtained from powerfully processed coal tar. Compared to petroleum asphalt, the adhesiveness is better. Coal Tar Pitch is high quality tar production with high fixed carbon. It has excellent adhesion, waterproofing and resistance against seawater, oil and various chemicals. In these properties, it is much better than petroleum asphalt tar. 

It can be used to produce painting, electrode, pitch coke, and tar felt. It also can be used as fuel and the raw material of asphalt carbon black.

 

Features:

The morphology, chemistry and crystallinity of recarburisers  have a major impact on the overall casting cost. The combined application and cost benefits, which are derived through the use of Desulco, enable foundries to manufacture castings in a highly cost effective manner.

 

reduces
 Recarburiser consumption
 Power consumption
 Inoculant consumption
 MgFeSi consumption
 Furnace refractory wear
 Scrap rate
 Tap to tap time
 Slag inclusions risk
 Chill

 

 increases
 Casting microstructure
 Productivity
 Process consistency

 

Carbon Recovery
Compared with calcined petroleum coke, acetylene coke and

graphite electrode scrap, Desulco yields the highest carbon

recovery and fastest dissolution time

Specifications:

Products

CPC

F.C.%

98.5MIN 

98.5MIN 

98MIN 

ASH %

0.8MAX

0.8MAX

1MAX

V.M.%

0.7 MAX

0.7 MAX

1 MAX

SULFUR %

0. 5MAX

0. 7MAX

1MAX

MOISTURE %

0.5MAX

0.5MAX

1MAX

 

Pictures:

 

Calcined Pitch Coke with Ash 0.5 percent max used in EAF

Calcined Pitch Coke with Ash 0.5 percent max used in EAF

Calcined Pitch Coke with Ash 0.5 percent max used in EAF

Calcined Pitch Coke with Ash 0.5 percent max used in EAF

 

 

FAQ:

 

1.MOQ:2 Containers

2.Size:1-3mm,1-5mm,2-6mm,3-5mm and as the customer's requirement

3.Packing: 1 ton jumbo bag or 25kgs paper in bag

4.Payment:T/T or L/C at sight

5.Delivery time: within 15 days after receiving the deposit

6.Usage: it is as carbon raiser,widely used in steelmaking,casting,casting iron,steel foundry,aluminum metallury. 

 

 

Q: What's the reason for grading? What about the use of composites? What's the difference?
2, according to mechanical properties can be divided into general type and high performance type. The strength of the universal carbon fiber is 1000 MPa (MPa) and the modulus is about 100GPa. High performance carbon fiber is divided into high strength (strength 2000MPa, modulus 250GPa) and high model (modulus 300GPa or more). Strength is greater than 4000MPa, also known as ultra high strength; modulus is greater than 450GPa, known as ultra-high model. With the development of aerospace and aviation industry, carbon fiber with high strength and high elongation has come into being. Its elongation is greater than 2%. The largest amount of polyacrylonitrile is PAN based carbon fiber.
Q: How does carbon dioxide affect fuel efficiency?
Carbon dioxide does not directly affect fuel efficiency, but it is a byproduct of the combustion of fossil fuels, which are commonly used as fuel in vehicles. When fossil fuels are burned, carbon dioxide is released into the atmosphere, contributing to the greenhouse effect and climate change. However, the increased concentration of carbon dioxide in the atmosphere does not have a direct impact on the fuel efficiency of a vehicle. Fuel efficiency is primarily determined by the design and technology of the vehicle, including factors such as engine efficiency, weight, aerodynamics, and driving conditions. Nevertheless, reducing carbon dioxide emissions is crucial for mitigating climate change and promoting a sustainable future.
Q: What are greenhouse gases?
Greenhouse gases are gases that trap heat in the Earth's atmosphere, contributing to the greenhouse effect and causing global warming. Some examples of greenhouse gases include carbon dioxide, methane, and nitrous oxide.
Q: What materials can be carbonitriding?
Low temperature carbonitriding for high alloy tool steel, high-speed steel tools, etc., in temperature carbonitriding is under great pressure not only in carbon steel wear parts, high temperature carbonitriding is mainly used for medium carbon steel and alloy steel under great pressure.
Q: How does carbon impact the acidity of rainfall?
Carbon dioxide (CO2) in the atmosphere reacts with water to form carbonic acid (H2CO3), which contributes to the acidity of rainfall. When carbon emissions from human activities increase, the concentration of CO2 in the atmosphere also increases. This leads to higher levels of carbonic acid in the rainwater, making it more acidic. This phenomenon is known as acid rain and can have detrimental effects on aquatic ecosystems, soil quality, and even human health.
Q: What are the properties of activated carbon?
Activated carbon, also referred to as activated charcoal, possesses a multitude of distinctive characteristics that endow it with high versatility and utility in a variety of applications. 1. Adsorption: The prominent attribute of activated carbon lies in its remarkable adsorptive capacity. Its porous structure grants it an extensive internal surface area, enabling it to efficiently adsorb molecules, ions, and impurities from gases, liquids, and solids. This adsorption capability renders it ideal for purposes of purification, such as water and air filtration, as well as the elimination of toxins and pollutants from industrial processes. 2. Porosity: Activated carbon exhibits an exquisitely porous structure characterized by an intricate network of interconnected pores. This porosity imparts a substantial surface area, facilitating the capture of a significant quantity of contaminants. The pores can be categorized into three types: micropores (less than 2 nm), mesopores (2-50 nm), and macropores (greater than 50 nm), each contributing to its adsorption capacity. 3. Chemical Stability: Activated carbon showcases exceptional chemical stability, rendering it resistant to degradation and disintegration when exposed to diverse chemicals or environments. This property ensures the maintenance of its adsorption capacity over extended periods and under harsh conditions, guaranteeing its efficacy and durability in diverse applications. 4. Selectivity: The surface properties of activated carbon can be modified to confer selectivity towards specific substances. Through various activation processes, such as physical or chemical treatments, the surface chemistry of activated carbon can be altered to enhance its affinity for certain molecules or contaminants, while reducing its affinity for others. This selectivity endows it with effectiveness for particular applications, such as the removal of specific pollutants or the capture of desired compounds. 5. Regenerability: Another advantageous characteristic of activated carbon lies in its capacity for regeneration. Once it reaches its adsorption capacity, it can be regenerated through heating or washing with appropriate solvents, allowing for multiple reuses before requiring replacement. This regenerability not only diminishes operational costs but also contributes to its sustainability and eco-friendliness. 6. Low Density: Activated carbon possesses a comparably low density, imparting it with lightweight properties and ease of handling. This attribute permits its utilization in various systems and devices without contributing excessive weight or bulk. 7. Thermal Stability: Activated carbon exhibits high thermal stability, enabling it to endure elevated temperatures without significant degradation. This property renders it suitable for applications involving high-temperature processes, such as gas purification or catalytic reactions. In summary, the diverse properties of activated carbon, encompassing its adsorption capacity, porosity, chemical stability, selectivity, regenerability, low density, and thermal stability, confer upon it the status of a versatile material widely employed in industries spanning water and air purification, gas separation, chemical processing, pharmaceuticals, and numerous others.
Q: Why carbon fiber resistant to low temperature
Resistance to 180 DEG C carbon fiber can be low temperature, under this condition, many materials are brittle, even sturdy steel has become fragile than glass, and carbon fiber under this condition is still very soft. Therefore, the carbon fiber composite core can be used in the design and manufacture of transmission carriers under extremely cold conditions, such as Antarctic research and research.
Q: Material characteristics of carbon fiber
Carbon fiber is a kind of new material with excellent mechanical properties due to its two characteristics: carbon material, high tensile strength and soft fiber workability. The tensile strength of carbon fiber is about 2 to 7GPa, and the tensile modulus is about 200 to 700GPa. The density is about 1.5 to 2 grams per cubic centimeter, which is mainly determined by the temperature of the carbonization process except for the structure of the precursor. Generally treated by high temperature 3000 degrees graphitization, the density can reach 2 grams per cubic mile. Coupled with its weight is very light, it is lighter than aluminum, less than 1/4 of steel, than the strength of iron is 20 times. The coefficient of thermal expansion of carbon fiber is different from that of other fibers, and it has anisotropic characteristics. The specific heat capacity of carbon fiber is generally 7.12. The thermal conductivity decreases with increasing temperature and is negative (0.72 to 0.90) parallel to the fiber direction, while the direction perpendicular to the fiber is positive (32 to 22). The specific resistance of carbon fibers is related to the type of fiber. At 25 degrees centigrade, the high modulus is 775, and the high strength carbon fiber is 1500 per centimeter.
Q: What are the advantages of carbon-based fuel cells?
Carbon-based fuel cells offer several advantages that make them a promising technology for the future. Firstly, they have a higher energy density compared to conventional batteries, meaning they can store and deliver more energy per unit weight. This allows for longer operating times and greater power output, which is particularly beneficial in applications requiring high power density and long-range capabilities, like electric vehicles. Secondly, carbon-based fuel cells boast a faster refueling time than conventional batteries. While it can take hours to recharge a battery, refueling a carbon-based fuel cell can be done in a matter of minutes. This significant advantage reduces refueling downtime and enables more convenient and efficient usage of the technology. Furthermore, carbon-based fuel cells have a lower environmental impact compared to traditional combustion engines. They produce only water and heat as byproducts, making them clean and environmentally friendly. This is in contrast to internal combustion engines that emit harmful pollutants contributing to air pollution and climate change. Another advantage of carbon-based fuel cells is their versatility and compatibility with existing infrastructure. They can easily be integrated into current energy systems, facilitating a smooth transition from fossil fuels to cleaner energy sources. This compatibility makes carbon-based fuel cells a viable option for various applications, from portable electronics to residential power generation. Lastly, carbon-based fuel cells have the potential to contribute to energy independence. As carbon-based fuels can be derived from renewable sources like biomass or waste, they offer a sustainable and domestically sourced energy solution. This reduces dependence on foreign oil and enhances energy security for countries. In conclusion, the benefits of carbon-based fuel cells include higher energy density, faster refueling time, lower environmental impact, compatibility with existing infrastructure, and the potential for energy independence. With these advantages, carbon-based fuel cells have the potential to revolutionize the energy landscape and provide a sustainable and efficient alternative to conventional energy sources.
Q: What is a carbon electrode? What's the use? What's the current situation in the industry? Try to be specific. Thank you
According to the composition of the electrode material, the electrode can be divided into three categories.The first kind of electrode is metal electrode and gas electrode, such as zinc electrode and copper electrode in Daniel cell, and standard hydrogen electrode;The second kind of electrodes are metal metal insoluble salt electrode and metal metal refractory oxide electrode, such as Ag-AgCl electrode.Third kinds of electrode is redox electrode (oxidation of any electrode was as redox electrode, here said the reduction electrode is refers to taking part in the electrode reaction substances are in the same solution), such as Fe3+, Fe2+ electrode solution composition.An electrode is a conductor in which an electric current enters or leaves an electrolyte during electrolysis. Electrolysis is the oxidation reduction reaction at the electrode interface.The electrode is divided into a cathode and an anode, and the anode is connected with the anode of the power supply, and the anode is oxidized. The cathode is connected with the cathode of the power supply, and the reduction reaction is arranged on the cathode.There are many kinds of electrolytic materials. Carbon electrodes are commonly used. In addition, titanium and other metals can also be used as electrodes. In electroplating, the metal containing the coating metal is often used as an anode, and the plated product is used as the cathode.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches