• 56''-64'' CARBON STEEL LSAW WELDED PIPE API/ASTM/JIS/DIN System 1
  • 56''-64'' CARBON STEEL LSAW WELDED PIPE API/ASTM/JIS/DIN System 2
56''-64'' CARBON STEEL LSAW WELDED PIPE API/ASTM/JIS/DIN

56''-64'' CARBON STEEL LSAW WELDED PIPE API/ASTM/JIS/DIN

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
5 m.t
Supply Capability:
300 m.t/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

 

Packaging & Delivery

Packaging Detail:

standard export packing or as customer's requirement

Delivery Detail:

within 10 - 30 days

Specifications

Spiral Welded Steel Pipes and Tubes 
1.Material:Q195-Q235 
2.Length:1-12m 
3.WT:1.0-14mm 
4.O.D.:20-273mm

 

 

Product Description:

 

1.Material : Q235,Q345,L245,L290,L360,L415,L450,L485,GrB,X42,46,X52,X56,X60,X65,X70,X80,X100

 

2,Standard:  SY/T5037-2000,GB/T9711-2011,API Spec 5L PSL1/PSL2,ASTM A252\A53,ISO3183,DIN17172,EN10217,JIS G3457,AWWA C200,ASTM A139,ASTM A671,ASTM A672

 

3.Wall thickness:  3.0mm-30mm 

 

4.Outer diameter:  φ168mm-3020mm

 

5,Length:  5m-12m or as your requirement

 

6,Corrosion protection standard: DIN30670,DIN30671, AWWAC210, AWWA C203, SY/T0413-2002,SY/T0414-2002

 

7,Application: Oil, gas, natural gas, water pipe, thermal electricity pipe, steel structure engineering, etc

 

 

 

Q195-q345 Material Steel Pipe's Materials

 

      Elements 
      Material   

Chemical Compsition%

Mechanical Property

C%

Mn%

S%

P%

Si%

Yield Point (Mpa)

Tensile Strength(Mpa)

Elongation 
(%) 

Q195

0.06-0.12

0.25-0.50

<0.050< span="">

<0.045< span="">

<0.030< span="">

>195

315-430

32-33

Q215

0.09-0.15

0.25-0.55

<0.05< span="">

<0.045< span="">

<0.030< span="">

>215

335-450

26-31

Q235

0.12-0.20

0.30-0.70

<0.045< span="">

<0.045< span="">

<0.030< span="">

>235

375-500

24-26

Q345

<0.20< span="">

1.0-1.6

<0.040< span="">

<0.040< span="">

<0.55< span="">

>345

470-630

21-22

 

 

 

Packaging & Delivery

Packaging Detail:

Normal exporting packing,in container or bulk vessel or as per clients' request

Delivery Detail:

2 months after confimed contract

Specifications

Large Diameter API 5L X70 PSL2 LSAW Steel Pipe 
Grade: X42, X46, X50, X52, X60, B, C 
OD: 1.5"-28" 
WT: SCH10-SCH160 
Brand:TPCO

Large Diameter API 5L X70 PSL2 LSAW Steel Pipe 

 

Specifications:

 

u Standard: API 5L

u Grade: B, C, X42, X46, X50, X52, X56, X60, X65, X70, X80

u OD: 1.5"-28" 

u WT: SCH10-SCH160 

u Length: 5-12m

u Ends Finish: plain end, bevel end, grooved end

u Surface Treatment: bare, black varnished, oiled finish, red color, anti-corrosion, 3PE, FBE or epoxy coating 

u Technique: hot rolled or cold drawn

u Application: api 5l steel pipe for conveying oil, water, gas

u Invoicing: based on theoretical weight or actual weight

u Payment Terms: L/C at sight, T/T or Western Union

u Trade Terms: FOB, CFR, CIF

u Certification: ABS manufacturing assessment, ABS design assessment, API 5CT, API 5L, DNV manufacturer certificate, ISO9001 quality management system certificate, ISO14001 environment management system certificate, GB/T28001 occupational health and safety management system certificate, A1 class manufacturing license of special equipment certificate, CCS, GL, LR, SGS, TüV, PDE

 

 

Q: Who knows what is the difference between double submerged arc welded pipe and longitudinal submerged arc welding?
Double submerged arc welding is also a kind of longitudinal submerged arc welding.
Q: How are steel pipes protected against underground corrosion?
Steel pipes are protected against underground corrosion through various methods such as cathodic protection, coatings, and corrosion inhibitors. Cathodic protection involves the use of sacrificial anodes or impressed current systems that direct corrosion away from the steel pipes. Coatings like epoxy or polyethylene are applied to the pipes to create a physical barrier against moisture and corrosive elements in the soil. Additionally, corrosion inhibitors can be added to the fluid inside the pipes to prevent corrosion from occurring.
Q: How are steel pipes protected against UV radiation?
Steel pipes are typically protected against UV radiation by applying a coating or paint that contains UV stabilizers. These stabilizers help to prevent the degradation and discoloration of the steel caused by prolonged exposure to sunlight and UV rays.
Q: What are the different methods of pipe joining for steel pipes?
There are several different methods of pipe joining for steel pipes. Some of the most common methods include: 1. Butt Welding: This method involves welding the ends of two steel pipes together. The ends are prepared by beveling or facing them to create a V-groove, which is then filled with molten metal to create a strong and durable joint. 2. Socket Welding: In this method, a socket is welded onto the end of a steel pipe, and then another pipe is inserted into the socket and welded in place. This creates a strong joint that is resistant to leakage and corrosion. 3. Threaded Joint: Steel pipes can also be joined using threaded connections. The ends of the pipes are threaded, and then a threaded coupling or union is used to connect them. This method is commonly used for smaller diameter pipes and allows for easy disassembly and reassembly. 4. Flanged Joint: Flanged joints are used for larger diameter pipes and involve attaching a flange to the end of each pipe. The flanges are then bolted together using gaskets to create a tight and secure joint. This method is commonly used in industries such as oil and gas, water treatment, and chemical processing. 5. Grooved Joint: Grooved joints involve using a grooving machine to create a groove around the outside of the pipe. A coupling or fitting is then inserted into the groove and secured with bolts or clamps. This method is quick and easy to install and allows for easy disassembly and reassembly. Each method of pipe joining has its own advantages and disadvantages, and the choice of method will depend on factors such as the size of the pipes, the application, and the required level of strength and durability.
Q: How are steel pipes used in the construction of railways and transportation systems?
Various purposes necessitate the common use of steel pipes in the construction of railways and transportation systems. Bridges and tunnels, in particular, heavily rely on steel pipes. In bridge construction, steel pipes act as structural components, providing overall support and stability. As for tunnels, steel pipes serve as ventilation shafts, promoting air circulation and the removal of fumes, thus ensuring the safety of passengers and workers. Furthermore, steel pipes find utility in the construction of railway tracks. They are utilized as supports, offering a stable foundation for train travel. In this context, steel pipes are typically coated or galvanized to prevent corrosion and guarantee their longevity. Additionally, steel pipes are employed in drainage systems within railway stations and transport hubs, playing a crucial role in proper water management and the prevention of flooding. Another significant application of steel pipes in transportation systems lies in the construction of signposts and streetlights. In these structures, steel pipes often serve as the primary structural element, providing strength and durability. Their malleability and ease of fabrication make them a sought-after choice, as they can be shaped to meet specific design requirements. In summary, steel pipes assume a vital role in the construction of railways and transportation systems, offering structural support, ensuring adequate ventilation, facilitating drainage, and serving as key components in various structures. Their strength, durability, and versatility render them an ideal choice for these applications, contributing to the safe and efficient operation of transportation networks.
Q: Can steel pipes be used for underground oil and gas pipelines?
Yes, steel pipes can be used for underground oil and gas pipelines. Steel is a commonly used material for such pipelines due to its strength, durability, and ability to withstand high pressure and extreme temperatures. Additionally, steel pipes can be coated or lined with corrosion-resistant materials to protect them from the corrosive properties of oil and gas.
Q: Can steel pipes be used for water supply lines?
Indeed, water supply lines can utilize steel pipes. In the realm of industrial and commercial settings, steel pipes find frequent employment in the conveyance of water and other fluids. Their remarkable endurance and robustness render them highly suitable for systems operating under high pressure. Moreover, steel pipes exhibit exceptional resistance to corrosion, a crucial attribute for upholding water supply quality and safety. Nevertheless, it remains imperative to guarantee that steel pipes employed for water supply lines are adequately coated or lined to avert any potential water contamination.
Q: What are the safety considerations while handling steel pipes?
When handling steel pipes, some key safety considerations include wearing appropriate personal protective equipment (PPE) such as gloves, safety glasses, and steel-toe boots to protect against potential injuries. It is important to be cautious of the weight and size of the pipes, using proper lifting techniques and equipment to prevent strains or accidents. Additionally, workers should be mindful of the sharp edges and potential for cuts or punctures, ensuring they have a clear and organized workspace to minimize the risk of tripping or falling. Regular inspections of the pipes for any damages or defects are also crucial to prevent accidents and maintain a safe working environment.
Q: How are steel pipes protected against microbial corrosion?
Steel pipes are protected against microbial corrosion through various methods, such as applying protective coatings or linings on the pipes' inner and outer surfaces. These coatings act as a barrier, preventing the contact of microorganisms with the steel surface, thereby reducing the risk of microbial corrosion. Additionally, biocides and inhibitors can be added to the pipe's contents or injected into the pipeline to inhibit the growth and activity of microbes, further protecting the steel pipes from microbial corrosion.
Q: What is the difference between steel pipes and ductile iron pipes?
Steel pipes and ductile iron pipes are both commonly used for plumbing and industrial applications, but there are notable differences between them. The main difference lies in their composition and mechanical properties. Steel pipes are made primarily from iron and carbon, with small amounts of other elements added for strength and corrosion resistance. On the other hand, ductile iron pipes contain a higher percentage of carbon and small amounts of other elements like silicon and manganese, which give them improved ductility and resistance to cracking. Consequently, steel pipes are typically stronger and more rigid, suitable for high-pressure applications, while ductile iron pipes offer better flexibility and impact resistance, making them ideal for underground installations and areas prone to ground movement. Additionally, steel pipes are usually more expensive than ductile iron pipes due to their higher strength and corrosion resistance.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords