• 24V MPPT Solar Inverter - KD-GTI500W Series Micro Inverter, Hot Sales System 1
  • 24V MPPT Solar Inverter - KD-GTI500W Series Micro Inverter, Hot Sales System 2
24V MPPT Solar Inverter - KD-GTI500W Series Micro Inverter, Hot Sales

24V MPPT Solar Inverter - KD-GTI500W Series Micro Inverter, Hot Sales

Ref Price:
get latest price
Loading Port:
China main port
Payment Terms:
TT OR LC
Min Order Qty:
1000 pc
Supply Capability:
100000 pc/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Structure

The transition from a centralized to a distributed inverter optimizes energy collection.

The converter module integrated into the solar panels can reduce installation costs.

Soft switch technology to replace hard-switching technology can improve efficiency and reduce heat dissipation.

From cottage industry to mass production, standardized design (hardware and software) to improve reliability and reduce costs.

Using a special capacitor (due to the high failure rate). Design requires a higher voltage to reduce the current, we use a special electrolytic capacitors.

The converter can be connected to the grid to eliminate the need for many battery applications. The high price of batteries, require maintenance, life expectancy is shorter.

Work required micro-inverter power increasingly smaller (only a few hundred watts), which can reduce the internal temperature and improve reliability.

Micro-inverter solar inverter system needs to deal with a lot of a particular power level, in order to increase production, thereby reducing costs.

 

 

DC input voltage range:10.5-28VDC
AC output voltage range:80-160VAC/180-260VAC
AC output power :500Wp
AC frequency range:50Hz/60Hz
G.W.:1.8kg
Size:315mm*188mm*85mm

 

KD-GTI500W Series Using IP67 waterproof streamline design, Can effectively prevent rainwater on the surface erosion, Built-in high-performance Maximum Power Point Tracking(MPPT)Function,Better able to track changes in the solar luminosity and control different output power, Effectively capture and collect sunlight. AC electric power transmission using the reverse transmission technology, Is one of our patented technology, The inverter output power can provide load priority use, Extra electricity to the grid, Efficient use of the inverter to the power emitted, Electricity transmission rate of up to 99%.

Features

Pure Sine Wave Output;

High performance Maximum Power Point Tracking(MPPT);

Power Automatically Locked(APL);

Reverse power transmission;

High-Frequency High Conversion Rate;

Anti-Islanding Protect;

Input /output is fully isolated to protect the electrical safety;

Multiple parallel stacking;

The Leading Patent Technology;

IP65 WaterProof;

Flexible Installation;

Simplify maintenance (user serviceable)

High Efficiency & Best Cost-Effectiveness

Images

 

 

 

 

Specification

Grid-series models

300W

500W

800W

1000W

Recommend use solar panels

420Wp

620Wp

1050Wp

1250Wp

DC Maximum Input Power

400W

600W

900W

1200W

DC maximum voltage

VpvDC30.2VDC

DC voltage range

Vpv 10.5V~28VDC

Maximum output power factor

99%

Maximum input current

20A

30A

45A

65A

AC output power

300W

500W

800W

1000W

AC maximum output power

300W

500W

800W

1000W

Anti-voltage protection

Fuse

AC standard voltage range

90~160VAC/190~262VAC

AC frequency range

55Hz~63Hz/ 45Hz-53Hz

THDI

<5%

Phase

<1%

Islanding protection

VAC;f AC

Output short circuit protection

Current-limiting

Show

LED

Installation

Wall hanging

Cooling

Fan

Standby Power

<2W

Night Power

<1W

Ambient temperature range

-25 °C~60°C

Humidity

0~99%(Indoor Type Design)

Waterproof

Indoor Type Design

Electromagnetic Compatibility

EN50081.part1 EN50082.part1

Power System Disturbance

EN61000-3-2 EN60950-1

Network test

DIN VDE 1026

Certificate

CE

 

FAQ

Can we visit your factory?

Surely, I will arrange the trip basing on your business schedule.

Can you do OEM for us?

Yes, we can.

How do you pack your products?

We have rich experience on how to pack the panels to make sure the safety on shipment when it arrives at the destination.

Can you help us install the module if we cooperate with you?

We haven’t entered into installation sector, but we have the plan in near future.

 

 

Q: How do you calculate the efficiency of a solar inverter?
The efficiency of a solar inverter can be calculated by dividing the output power of the inverter by the input power it receives from the solar panels. This ratio is then multiplied by 100 to express the efficiency as a percentage.
Q: Can a solar inverter be used with a solar-powered air cooling system?
Yes, a solar inverter can be used with a solar-powered air cooling system. The solar inverter is responsible for converting the direct current (DC) generated by the solar panels into alternating current (AC) that can be used to power the air cooling system. This allows the system to operate efficiently using solar energy.
Q: What is the expected lifespan of a solar inverter?
The expected lifespan of a solar inverter typically ranges from 10 to 20 years. However, this can vary depending on factors such as the quality of the inverter, maintenance practices, and environmental conditions.
Q: Can a solar inverter be used with other renewable energy sources like wind or hydro power?
Yes, a solar inverter can be used with other renewable energy sources like wind or hydro power. Inverters are designed to convert the direct current (DC) produced by renewable energy sources into alternating current (AC) that can be used to power homes and businesses. So, by connecting wind turbines or hydroelectric generators to a solar inverter, the generated DC power can be efficiently converted and integrated into the electrical grid or used for various applications.
Q: Can a solar inverter be used for commercial-scale solar installations?
Yes, a solar inverter can be used for commercial-scale solar installations. In fact, commercial-scale solar installations often require multiple solar inverters to convert the DC power generated by the solar panels into usable AC power for commercial use. These inverters are designed to handle the higher power output and voltage levels typically found in larger solar installations.
Q: How does a solar inverter handle variations in grid voltage?
A solar inverter handles variations in grid voltage by continuously monitoring the grid voltage and adjusting its own output voltage accordingly. It uses advanced control algorithms to maintain a stable and consistent output voltage despite fluctuations in the grid voltage. This ensures that the solar power generated is synchronized with the grid and can be seamlessly fed into the electrical system.
Q: Can a solar inverter be used with solar-powered remote sensing systems?
Yes, a solar inverter can be used with solar-powered remote sensing systems. A solar inverter is responsible for converting the direct current (DC) produced by solar panels into alternating current (AC) that can be used to power electrical devices. In the case of solar-powered remote sensing systems, the solar inverter plays a crucial role in converting the DC power generated by the solar panels into AC power to operate the sensing equipment. This ensures the efficient utilization of solar energy in powering remote sensing systems.
Q: Can a solar inverter be used in systems with different module voltages?
Yes, a solar inverter can be used in systems with different module voltages by adjusting its settings or using additional components such as DC optimizers or power optimizers. These components help in matching the voltage of the solar modules to the input voltage range of the inverter, allowing for efficient power conversion.
Q: How do you maintain a solar inverter?
To maintain a solar inverter, regular inspections and cleanings are necessary to ensure optimal performance. This includes checking for any loose connections, dust or debris accumulation, and ensuring proper ventilation. Additionally, monitoring the inverter's performance and output regularly can help identify any issues or anomalies that may require professional attention. It is also advisable to follow the manufacturer's guidelines and recommendations for maintenance and servicing.
Q: How does a solar inverter handle voltage fluctuations?
A solar inverter handles voltage fluctuations by continuously monitoring the input voltage from the solar panels. When there is a fluctuation in the input voltage, the inverter adjusts its internal circuitry to ensure a stable and consistent output voltage. This helps protect the connected appliances and grid from potential damage caused by sudden voltage changes.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords