• 1500V Solar Inverter MPPT Solar Charger Controller 2024 Best Selling New Design PC1600F Series System 1
  • 1500V Solar Inverter MPPT Solar Charger Controller 2024 Best Selling New Design PC1600F Series System 2
  • 1500V Solar Inverter MPPT Solar Charger Controller 2024 Best Selling New Design PC1600F Series System 3
  • 1500V Solar Inverter MPPT Solar Charger Controller 2024 Best Selling New Design PC1600F Series System 4
1500V Solar Inverter MPPT Solar Charger Controller 2024 Best Selling New Design PC1600F Series

1500V Solar Inverter MPPT Solar Charger Controller 2024 Best Selling New Design PC1600F Series

Ref Price:
get latest price
Loading Port:
China main port
Payment Terms:
TT OR LC
Min Order Qty:
1 pc
Supply Capability:
1000 pc/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

 

The Features of PC1600F MPPT Solar Charger Controller  :

·45A/60A MPPT solar charge controller
·24V/48V auto work
·PV Output :70v-145v
·Several seconds tracking speed
·High Tracking efficiency of 99%
·Multiphase synchronous rectification technology
·Peak conversion efficiency of 98%
·DSP processors architecture ensures high speed and performance
·Multifunction LCD displays system data and status
·Four stages charging optimizes battery performance

The Specification of PC1600F MPPT Solar Charger Controller :

odelPC16-4515FPC16-6015F
Default Battery system Voltage24v/48vdc(adjustable)
Charge Input
PV Open Circuit Voltage rangeOperational max=145VDC temperature correct VOC
Max PV input power(24v)1200W1600W
Max PV input power(48v)2400W3200W
Battery voltage
Nominal Voltage24V / 48V
Absorption Voltage27.0V / 54.0V
Refloat Voltage27.4V / 54.8V
Float Voltage28.6V / 57.2V
Low voltage protection point21.0V / 42.0V
DC Output
Output Voltage22.0-28.6V / 44V-57.2V
Rated Current45A continuous @40°C ambient60A continuous @40°C ambient
Warning for low voltage23.0V / 46.0V
Cut off for low voltage21.6V / 43.0V
Low voltage recovery26.0V / 46.0V
Display
LED indicationSystematic operation, LV indication, LV protection, over charge protection, loads protection, short circuit protection
LCD display(optional)Charge voltage, charge current, voltage of storage battery, capacity of storage battery, output current
Alarm Protections1.PV array short circuit protection, PV reverse polarity protection 2.Battery reverse polarity protection , Over charging protection 3.Output short circuit protection 4.Low voltage protection for storage battery
General specification
Protection LevelIn compliance with regulations of DIN EN60529 and standards of IP22
Charge modePWM ,constant current—constant voltage, function of automatic protection for storage battery
Radiating modeFan cooling
Working modeGeneral controller
Efficiency≥98%
Self -consumption< 10mA< 15mA
Environment
Environmental temperature-10°C --55°C
Ambient humidity0--90%,No condensation  
Altitude≤4500m
Dimension
Unit size D*W*H(mm)/G.W(kg)257.1*167.6*82.9mm/3kg
Package size D*W*H(mm)/G.W(kg)390*365*365mm(6pcs/carton)/19kg

 

Some Pictures of PC1600F MPPT Solar Charger Controller on display

 

 

 

 

Warrenty

provides a 13 year limited warranty (“Warranty”) against defects in materials and workmanship for its Uninterruptible power supply, Power inverter/chargers, Solar charge controllers, Battery Products (“Product”).

The term of this Warranty begins on the Product(s) initial purchase date, or the date of receipt of the Product(s) by the end user, whichever is later. This must be indicated on the invoice, bill of sale, and/or warranty registration card submitted to MUST-Solar. This Warranty applies to the original MUST-Solar Product purchaser, and is transferable only if the Product remains installed in the original use location.

 

FAQ

1.    How do I decide which system is right for me ?

For protection from long outages, include a generator or solar panels in your Must solar system. Shorter outages can be handled by a battery-only system.

2.    Where my system will be installed ?

Must solar systems are usually wall-mounted near a home's main electrical (circuit breaker) panel.

3.    How do I install my system ?

A must solar backup inverter is connected to a home electric system , we will supply detailed installation manual and videos for our customers .

4.    How fast will my system respond to a power outage ?

Must solar inverters typically transfer to battery power in less than 16 milliseconds (less than 1/50th of a second).

 

Q: How does a solar inverter affect the overall system cost?
A solar inverter affects the overall system cost by adding to the initial investment required for installing a solar power system. Inverters are an essential component in converting the DC electricity produced by solar panels into usable AC electricity for our homes or businesses. The cost of a solar inverter depends on its capacity, brand, and features. While inverters do add to the overall system cost, they are crucial for efficient energy production and can enhance the system's performance and longevity.
Q: Can a solar inverter be used in systems with different module capacities?
Yes, a solar inverter can be used in systems with different module capacities. Solar inverters are designed to convert the DC power generated by solar panels into AC power for use in the electrical grid or for consumption. They are typically compatible with a wide range of module capacities and can accommodate various configurations of solar panels. However, it is important to ensure that the solar inverter's specifications and capacity match the overall system requirements to ensure optimal performance and efficiency.
Q: How does a solar inverter affect the overall aesthetics of a solar installation?
A solar inverter does not directly impact the aesthetics of a solar installation as it is typically installed indoors or in an inconspicuous location. However, a well-designed solar inverter system can contribute to a cleaner and more organized appearance of the overall solar installation by reducing the need for visible wiring and ensuring efficient energy conversion.
Q: How does a solar inverter protect against power surges?
A solar inverter protects against power surges by constantly monitoring the voltage and current levels of the solar panels and adjusting them accordingly. It has built-in surge protection devices that detect any sudden increase in voltage or current and divert the excess energy away from the solar panels, preventing damage to the system. Additionally, the inverter is equipped with advanced circuitry and protective components that can absorb and dissipate the excess energy, ensuring a stable and safe operation of the solar power system.
Q: Can a solar inverter convert DC power to AC power?
Yes, a solar inverter can convert DC power generated by solar panels into AC power suitable for household or grid use.
Q: Can a solar inverter be used with different types of grid connection standards?
Yes, a solar inverter can be used with different types of grid connection standards. Solar inverters are designed to convert the direct current (DC) generated by solar panels into alternating current (AC) that can be fed into the electrical grid. They are manufactured to comply with various grid connection standards and regulations, allowing them to be compatible with different types of grids worldwide. This flexibility enables solar inverters to be used in a wide range of countries and regions with varying grid connection requirements.
Q: Can a solar inverter be used with different types of batteries?
Yes, a solar inverter can be used with different types of batteries, as long as they are compatible with the inverter's specifications and voltage requirements.
Q: What is the role of an MPPT (Maximum Power Point Tracking) inverter?
The role of an MPPT (Maximum Power Point Tracking) inverter is to optimize the conversion of solar energy into usable electricity. It constantly tracks and adjusts the operating point of the solar panels to ensure that they are always operating at their maximum power point, which maximizes the efficiency and output of the solar system.
Q: Can a solar inverter be used with solar-powered remote sensing systems?
Yes, a solar inverter can be used with solar-powered remote sensing systems. A solar inverter is responsible for converting the direct current (DC) produced by solar panels into alternating current (AC) that can be used to power electrical devices. In the case of solar-powered remote sensing systems, the solar inverter plays a crucial role in converting the DC power generated by the solar panels into AC power to operate the sensing equipment. This ensures the efficient utilization of solar energy in powering remote sensing systems.
Q: What are the key factors affecting the efficiency of a solar inverter?
The key factors affecting the efficiency of a solar inverter include the quality and design of the inverter itself, the type and condition of the solar panels being used, the temperature and shading conditions at the installation site, and the overall system design and configuration. Additionally, factors such as the efficiency of the DC to AC conversion process, the presence of any power losses or inefficiencies in the wiring and connections, and the overall system maintenance and monitoring practices can also impact the efficiency of a solar inverter.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords