• Steel Billet Manufactured by Blast Furnace System 1
  • Steel Billet Manufactured by Blast Furnace System 2
Steel Billet Manufactured by Blast Furnace

Steel Billet Manufactured by Blast Furnace

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
25 m.t.
Supply Capability:
100000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

 

Steel Billet Manufactured by Blast Furnace

 

1.Structure of  Steel Billet Manufactured by Blast Furnace

 

Steel Billet Manufactured by Blast Furnace is the raw material of all kinds of steel mill. Billet section of square, round, flat, rectangular and abnormity, etc Several, mainly related to shape of rolled products. Simple rolled section steel, choose cross section of square billet or rectangular billet. rolling The sector products such as flat steel, Angle steel, select the rectangular billet or slab. Had better profiled billet when production beams, channels, and in rolling process Lines and improve the yield. The raw material of round billet is the production of seamless tube. 


2.Main Features of  Steel Billet Manufactured by Blast Furnace.

Steel Billet Manufactured by Blast Furnace section size should meet the requirements of rolling deformation and finished product quality, but also roll strength and biting condition of restrictions. General steel Billet section height H. And the roll diameter D The ratio of the ( namely H/D) Should be less than or equal to zero 0.5 . Length of steel billet by finishing temperature, Rolling time and the length of the product Or times ruler. When heated too long accident prone to bump the furnace wall of steel, too short, furnace bottom utilization rate is not high, influence the heating furnace production. For the production Choose a variety of steel and steel billet, should consider the affinities of billet, as far as possible in order to improve the productivity of the roughing mill, simplify the stock management of workshop.

 

3.  Steel Billet Manufactured by Blast Furnace Images

 

 

 

Steel Billet Manufactured by Blast Furnace

Steel Billet Manufactured by Blast Furnace

 

 

 

4.  Steel Billet Manufactured by Blast Furnace Specification

 Steel Billet Manufactured by Blast Furnace  rolled steel, after processing can be used for mechanical parts, forging parts, processing all kinds of steel, steel Q345B channel steel, wire rod is the role of the billet. Steel billet is used in the production of semi-finished products, generally cannot be used directly for the society. Steel billets and steel are strictly divided into standard, cannot decide to whether the business enterprise of the final product, and according to unified standards to perform the whole society. Typically, billet and the steel is relatively easy to distinguish, but for some steel billet, and have the same specification and same steel purposes (such as rolling tube billet), whether can be used for other industries, whether through steel processing process, whether through a finished product rolling mill processing to distinguish

Material standard The editor Range of thickness: 150-240 - mm + / - 5 mm width range: 880-1530 - mm + / - 20 mm Length: 3700-10000 - mm + / - 500 - mm Cross-sectional size: 64 * 64; 82 * 82; 98 * 98; 124 * 124; 120 * 150; 152 * 164; 152 * 170 mm Length: 9000 mm Section of tolerance: billet: 1.0 + / - 2.0-1.0 + / - 1.0 mm slab: width: + / - 2.0 mm thickness: + / - 3.0 mm The length tolerance: + / - 200 mm Section diagonal tolerance: 3.5-8.0 MM Billet section size protrusions requirements: < 1242 mm, do not allow; > = 1242 mm, < = 2 mm 1242 mm, < = 3 mm Beheading (shear) extension deformation: < 1242 mm billet: no control; The slab: < = 15 mm Surface tilt: no more than billet section 0.1 Bending: every 1 m length is not more than 10 mm The distortion: length < = 5 m, < = 11. ; The length of the < = 7.5 M, < = 5. Material % 3 sp/PS chemical composition: C Mn Si S P

 

5.FAQ of  Steel Billet Manufactured by Blast Furnace

 

We have organized several common questions for our clientsmay help you sincerely 

 

How about your company

A world class manufacturer & supplier of castings forging in carbon steel and alloy steelis one of the large-scale professional investment casting production bases in China,consisting of both casting foundry forging and machining factory. Annually more than 8000 tons Precision casting and forging parts are exported to markets in Europe,America and Japan. OEM casting and forging service available according to customer’s requirements.

 

How to guarantee the quality of the products

We have established the international advanced quality management systemevery link from raw material to final product we have strict quality testWe resolutely put an end to unqualified products flowing into the market. At the same time, we will provide necessary follow-up service assurance.

 

③How is the packaging and delivery?

Exporting Package with the steel material cover and the delivery term is based on the project.

Q:Are steel billets magnetic?
Yes, steel billets are magnetic. Steel is an alloy primarily composed of iron, which is a ferromagnetic material. This means that it can be magnetized and therefore exhibits magnetic properties. Steel billets, being solid blocks or bars of steel, retain the magnetic properties of the material they are made from.
Q:What are the main factors affecting the fatigue strength of alloy steel billets?
The main factors affecting the fatigue strength of alloy steel billets include the composition of the alloy, the presence of impurities or defects, the heat treatment process, surface conditions, and the presence of residual stresses. Additionally, the applied load, frequency, and environmental conditions can also influence the fatigue strength of alloy steel billets.
Q:What are the environmental impacts of producing steel billets?
The production of steel billets has several environmental impacts. One of the main concerns is the emission of greenhouse gases, particularly carbon dioxide (CO2), during the steelmaking process. Steel production is a significant contributor to global CO2 emissions, as the process requires high temperatures and the use of fossil fuels, such as coal or natural gas, to extract iron from iron ore. The combustion of these fuels releases CO2 into the atmosphere, contributing to climate change. Another environmental impact of steel billet production is the generation of air pollutants. The use of fossil fuels in steelmaking can result in the release of sulfur dioxide (SO2), nitrogen oxides (NOx), and particulate matter, which contribute to air pollution and can have negative effects on human health. Additionally, the production of steel billets often involves the use of additives and chemicals, which can further contribute to air pollution if not properly managed. The extraction of iron ore, which is a primary raw material for steel production, can also have significant environmental consequences. Mining activities can lead to deforestation, habitat destruction, and soil erosion. Furthermore, the extraction and transportation of iron ore require the use of heavy machinery and vehicles, which consume energy and contribute to air pollution. Water usage is another environmental concern in steel billet production. Steelmaking processes require substantial amounts of water for cooling, cleaning, and dust suppression. The extraction and treatment of water, as well as the discharge of wastewater, can have adverse effects on local water sources, particularly if not properly managed or treated. Lastly, the production of steel billets also generates waste and by-products. Steel slag, a by-product of the steelmaking process, can contain heavy metals and other pollutants. If not properly treated or disposed of, these by-products can contaminate soil and water resources. Overall, the production of steel billets has significant environmental impacts, including greenhouse gas emissions, air pollution, water usage, and the generation of waste and by-products. To mitigate these impacts, efforts are being made to develop cleaner and more energy-efficient steelmaking technologies, increase the use of recycled steel, and improve waste management practices in the industry.
Q:What are the different methods of steel billet surface coating?
There are several methods of steel billet surface coating that are commonly used in various industries. These methods aim to enhance the durability, corrosion resistance, and appearance of the steel billets. Some of the different methods of steel billet surface coating include: 1. Hot-dip galvanizing: This method involves immersing the steel billets in a bath of molten zinc. The zinc forms a protective layer on the surface of the steel, providing excellent corrosion resistance. Hot-dip galvanizing is widely used in construction, automotive, and infrastructure industries. 2. Electroplating: In this method, an electric current is used to deposit a thin layer of metal, such as chromium or nickel, onto the surface of the steel billets. Electroplating improves the appearance of the steel and provides a protective coating against corrosion. 3. Powder coating: Powder coating involves electrostatically spraying a dry powder onto the surface of the steel billets. The powder is then cured using heat, which forms a hard, durable, and attractive coating. Powder coating provides excellent resistance to impact, corrosion, and chemicals. 4. Painting: Steel billets can be coated with paint using various techniques such as spraying, dipping, or brushing. Paint coatings not only enhance the appearance of the steel but also provide protection against corrosion and weathering. 5. Thermal spray coating: This method involves projecting molten or semi-molten materials onto the surface of the steel billets. The materials can be metals, ceramics, or polymers, which form a coating upon solidification. Thermal spray coatings provide excellent corrosion resistance, wear resistance, and thermal insulation. 6. Anodizing: Anodizing is commonly used for aluminum, but it can also be applied to steel billets. In this process, the steel billets are immersed in an electrolyte solution and subjected to an electric current. This creates a controlled oxidation reaction on the surface, forming a protective layer of oxide. Anodizing improves the corrosion resistance and appearance of the steel. Each of these methods has its own advantages and is suitable for specific applications. The choice of coating method depends on factors such as the intended use of the steel billets, environmental conditions, and desired properties of the coating.
Q:How are steel billets used in the manufacturing of slabs?
The manufacturing of slabs relies heavily on steel billets, which are vital raw materials. Slabs, being sizable and flat steel pieces, are widely used in various industries like construction, automotive, and manufacturing. To create slabs, the initial step involves obtaining steel billets. These billets are partially finished steel products that are usually acquired through continuous casting or hot-rolling ingots. They are solid blocks of steel, either rectangular or square-shaped, and their cross-sectional area varies depending on the desired size and thickness of the slabs. Once the steel billets are acquired, they undergo heating to a high temperature, making them more pliable and easier to shape. This heating process, known as hot rolling, entails passing the billets through a series of rolling mills, gradually reducing their thickness and increasing their length. Intense pressure is applied to the billets in the rolling mills, resulting in elongation and the attainment of the desired dimensions. Throughout the hot rolling process, the steel billets are often subjected to different manipulations, such as reheating and cooling, to ensure proper shaping and metallurgical properties. Additional processes like descaling (removal of the oxide layer) and surface treatment may also be performed on the billets to enhance their quality and finish. Upon completion of the hot rolling process, the steel billets are transformed into slabs. These slabs then undergo further processing to meet specific requirements. For example, they may undergo additional rolling or reheating to achieve the desired thickness, dimensions, and surface finish. Depending on the intended use, the slabs can be cut into smaller pieces or further processed into various steel products like plates, sheets, or coils. In conclusion, steel billets are of utmost importance in the manufacturing of slabs. They serve as the starting point for the production process, undergoing hot rolling and other treatments to shape them into the desired form, size, and quality. The resulting slabs are then used as a key input across multiple industries, contributing to the production of a wide range of steel products.
Q:What does the billet of the steel plant refer to?
When rolling the long material, the square billet is poured, the rolled plate is cast, the rolling pipe is cast into round billet, and the rolled narrow strip steel is poured into the rectangular billet, etc..
Q:What is the active carbon. What is the difference with the charcoal?
The chemical activation method. The activator of discharged gas, or by activating agent impregnated material, after the high temperature treatment can be activated carbon. The activated carbon has a microcrystalline structure, crystallite alignment completely irregular. The micro crystal (radius of less than 20, a: = 10-10 m), transition hole (radius 20 ~ 1000), big hole (radius of 1000 ~ 100000), so it has great inner surface, the surface area of 500 to 1700 meters / 2 grams.
Q:What are the main factors affecting the machinability of steel billets?
Several key factors influence the machinability of steel billets, which refers to the ease with which they can be cut and shaped by machining processes. These factors encompass the composition of the steel, its microstructure, the presence of impurities or inclusions, and the mechanical properties of the material. The machinability of steel is significantly impacted by its composition. Elements like carbon, manganese, sulfur, and phosphorus play a crucial role in determining the cutting performance. For example, a higher carbon content can increase hardness, thereby making the steel more challenging to machine. Conversely, manganese can enhance machinability by promoting the formation of a favorable microstructure. The microstructure of the steel, influenced by factors such as heat treatment and alloying elements, also affects machinability. Fine-grained steels with a homogeneous microstructure are generally easier to machine compared to coarse-grained ones. Additionally, the inclusion of alloying elements like chromium or molybdenum can enhance machinability by increasing the material's hardness and wear resistance. Machinability can be negatively affected by impurities or inclusions present in the steel, such as non-metallic particles or oxides. These impurities can result in tool wear, surface defects, and inadequate chip formation during machining. Therefore, minimizing the level of impurities in the steel through meticulous production and refining processes is crucial. Moreover, the mechanical properties of the steel, including hardness, strength, and ductility, impact machinability. High-strength steels tend to be more challenging to machine due to their increased hardness, necessitating greater cutting force. Ductility also plays a vital role as it affects the steel's ability to form chips during machining. Striking a balance between hardness and ductility is desirable for optimal machinability. In conclusion, the machinability of steel billets is influenced by various factors encompassing composition, microstructure, impurities, and mechanical properties. It is imperative to comprehend and control these factors to ensure efficient and effective machining processes.
Q:What are the different types of steel alloys used for manufacturing steel billets?
There are various types of steel alloys used for manufacturing steel billets, including carbon steel, alloy steel, and stainless steel. Carbon steel is the most commonly used alloy and is known for its strength and durability. Alloy steel contains additional elements such as nickel, chromium, or manganese, which enhance its properties and make it suitable for specific applications. Stainless steel, on the other hand, is corrosion-resistant and often used in industries requiring high resistance to rust and staining.
Q:What are the different types of surface defect detection equipment for steel billets?
Steel billets have a variety of surface defect detection equipment available. These equipment are specifically designed to identify and analyze defects on the surface of steel billets, ensuring that only top-notch products are used for different applications. Some of the diverse types of surface defect detection equipment for steel billets include: 1. Ultrasonic Testing (UT): UT equipment utilizes sound waves to detect surface defects in steel billets. It emits high-frequency sound waves that penetrate the material and bounce back when they come across any surface irregularities. This method aids in the identification of cracks, voids, and other defects on the surface. 2. Eddy Current Testing (ECT): ECT equipment uses electromagnetic induction to detect surface defects in steel billets. It operates by passing an alternating current through a coil, generating a magnetic field that interacts with the conductive material of the billet. Any surface defect or irregularity causes a change in the magnetic field, which can be measured and analyzed. 3. Magnetic Particle Inspection (MPI): MPI equipment utilizes magnetic fields and iron particles to detect surface defects in steel billets. The billet is magnetized, and iron particles are applied to its surface. These particles gather around any surface defect, creating visible indications that can be easily identified and evaluated. 4. Visual Inspection: Visual inspection equipment involves the use of cameras, lasers, and other optical devices to detect surface defects in steel billets. These devices capture images or videos of the billet's surface, enabling inspectors to visually identify any irregularities or defects. 5. Thermographic Testing: Thermographic equipment uses infrared cameras to detect surface defects in steel billets by measuring temperature variations. Any defect causes a difference in heat transfer, resulting in distinct thermal patterns that can be detected and analyzed. 6. X-ray Inspection: X-ray inspection equipment employs X-ray radiation to penetrate the steel billet and detect internal and surface defects. It provides detailed images that allow inspectors to identify cracks, voids, and other defects that are not visible to the naked eye. In summary, these various types of surface defect detection equipment for steel billets offer a range of methods to ensure the quality and integrity of the billets, enabling manufacturers to deliver high-quality steel products to different industries.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Related keywords