• Used in EAF as Charge Coke for Steel Mills with S 0.3%max System 1
  • Used in EAF as Charge Coke for Steel Mills with S 0.3%max System 2
Used in EAF as Charge Coke for Steel Mills with S 0.3%max

Used in EAF as Charge Coke for Steel Mills with S 0.3%max

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
21 m.t.
Supply Capability:
6000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Introduction:

Calcined anthracite can be called carbon additive, carbon raiser, recarburizer, injection coke, charging coke, gas calcined anthracite.

Carbon Additive/Calcined Anthracite Coal may substitute massively refinery coke or graphite. Meanwhile its cost is much less than the refinery coke and graphite. Carbon Additive is mainly used in electric steel ovens, water filtering, rust removal in shipbuilding and production of carbon material. 

 It has good characteristics with low ash, low resistivity, low sulphur, high carbon and high density. It is the best material for high quality carbon products. It is used as carbon additive in steel industry or fuel.

 Features:

Best quality Taixi anthracite as raw materials through high temperature calcined at 800-1200   by the DC electric calciner with results in eliminating the moisture and volatile matter from Anthracite efficiently, improving the density and the electric conductivity and strengthening the mechanical strength and anti-oxidation, It has good characteristics with low ash, low resistivity, low carbon and high density. It is the best material for high quality carbon products, it is used as carbon additive in steel industry or fuel.

Specifications:

PARAMETER   UNIT GUARANTEE VALUE

F.C.%

95MIN 

94MIN

93MIN

92MIN

90MIN

85MIN 

84MIN 

ASH %

4MAX

5MAX

6 MAX

6.5MAX

8.5MAX

12MAX

13MAX

V.M.%

1 MAX

1MAX

1.0MAX

1.5MAX 

1.5MAX

3 MAX

3 MAX

SULFUR %

0.3MAX

0.3MAX

0.3MAX

0.35MAX

0.35MAX

0.5MAX

0.5MAX

MOISTURE %

0.5MAX

0.5MAX

0.5MAX

0.5MAX

0.5MAX

1MAX

1MAX

 

 

Pictures

 

Used in EAF as Charge Coke for Steel Mills with S 0.3%max

Used in EAF as Charge Coke for Steel Mills with S 0.3%max

Used in EAF as Charge Coke for Steel Mills with S 0.3%max

Used in EAF as Charge Coke for Steel Mills with S 0.3%max

 

FAQ:

Packing:

(1). Waterproof jumbo bags: 800kgs~1100kgs/ bag according to different grain sizes;

(2). Waterproof PP woven bags / Paper bags: 5kg / 7.5kg / 12.5kg / 20kg / 25kg / 30kg / 50kg small bags;

(3). Small bags into jumbo bags: waterproof PP woven bags / paper bags in 800kg ~1100kg jumbo bags.

Payment terms
20% down payment and 80% against copy of B/L.

Workable LC at sight,

 

Q: What are the impacts of carbon emissions on wildlife?
Carbon emissions have a significant impact on wildlife as it contributes to climate change, leading to habitat loss, changes in migration patterns, and increased vulnerability to disease and extinction. Additionally, the acidification of oceans due to increased carbon dioxide levels affects marine life, disrupting food chains and damaging coral reefs. Overall, carbon emissions pose a grave threat to the survival and well-being of various species.
Q: How does carbon affect the formation of tornadoes?
Carbon does not have a direct effect on tornado formation. Tornadoes primarily occur when warm, moist air from the surface interacts with cold, dry air from higher levels of the atmosphere, creating strong upward drafts and rotating air columns. Carbon, as an element, does not have a significant role in this process. However, carbon emissions and human-induced climate change can indirectly impact weather patterns, including the frequency and intensity of tornadoes. The burning of fossil fuels, which releases carbon dioxide into the atmosphere, contributes to global warming. This, in turn, leads to changes in temperature and moisture patterns that can influence the conditions necessary for tornado formation. The increased levels of carbon dioxide in the atmosphere can cause the atmosphere to become more unstable, creating conditions favorable for severe thunderstorms that can produce tornadoes. Moreover, the warmer atmosphere with higher moisture content can provide more fuel for these storms, potentially making them stronger. It is important to note that the relationship between carbon emissions and tornadoes is complex and still an ongoing area of research. While there is a possibility of a connection between climate change and tornadoes, it is difficult to attribute individual tornadoes solely to carbon emissions, as tornadoes are influenced by various meteorological factors. In conclusion, carbon does not directly impact tornado formation, but the increased carbon emissions and resulting climate change can indirectly affect the conditions that contribute to tornado formation. Further scientific research is necessary to fully comprehend the relationship between carbon emissions, climate change, and tornado activity.
Q: How is carbon used in the production of lubricants?
Carbon is used in the production of lubricants as it forms the base of many lubricant formulations. Carbon compounds, such as hydrocarbons, are used as the primary ingredient in lubricants to provide lubricating properties. These compounds help reduce friction and wear between moving parts, thus improving the efficiency and lifespan of machinery and equipment.
Q: Why does the carbon content of steel increase and the mechanical properties change?
3, according to the forming method classification: (1) forging steel; (2) cast steel; (3) hot rolled steel; (4) cold drawn steel4., according to chemical classification(1): A. carbon steel low carbon steel (C = 0.25%); B. (C = 0.25~0.60%) in carbon steel high carbon steel; C. (C = 0.60%).(2): A. alloy steel, low alloy steel (alloy element content is less than or equal to 5%) B. alloy (5~10% alloy element content, high alloy steel (C.) alloy element content > 10%).5. Classification according to metallographic structure(1) annealed state of A. eutectoid steel (ferrite + Zhu Guangti), B. eutectoid steel (Zhu Guangti), C. eutectoid steel (Zhu Guangti + cementite), D., bainitic steel (Zhu Guangti + seepage body)(2) normalizing condition: A. pearlitic steel; B. bainitic steel; C. martensitic steel; D. austenitic steel(3) no phase change or partial phase change occurs6, according to smelting method classification(1) according to the kind of furnaceA.: open hearth steel (a) acid open hearth steel; (b) basic open hearth steel.B. converter steel: (a) the Bessemer steel; (b) basic Bessemer steel. Or (a) bottom blown converter steel; (b) (c) side blown converter steel; BOF steel.C. electric furnace steel: electric arc furnace (a) steel; steel electroslag furnace (b); (c) induction furnace steel; (d) vacuum consumable steel; (E) electron beam furnace.(2) according to the degree of deoxidization and pouring systemA. boiling steel; B. semi killed steel; C. killed steel; D. special killed steel
Q: What is carbon black filler?
Carbon black filler is a type of additive that is commonly used in the production of rubber and plastic products. It is a fine, powdery substance that is derived from the incomplete combustion of hydrocarbons, such as oil or natural gas. Carbon black filler is composed primarily of elemental carbon, with small amounts of other elements such as hydrogen, oxygen, and sulfur. The main purpose of using carbon black filler is to improve the physical properties of rubber and plastic materials. It is added to enhance the strength, durability, and wear resistance of the final product. Carbon black filler also helps to increase the stiffness and hardness of the material, making it more suitable for various applications. In addition to its mechanical properties, carbon black filler also provides other benefits. It acts as a reinforcing agent, increasing the tensile strength and tear resistance of rubber compounds. It also enhances the electrical conductivity of the material, making it useful in applications where static electricity needs to be dissipated. Moreover, carbon black filler helps to protect the material from the harmful effects of UV radiation and ozone. It acts as a UV stabilizer and antioxidant, preventing degradation and prolonging the lifespan of the product. Carbon black filler also improves the thermal conductivity of rubber and plastic materials, aiding in heat dissipation. Overall, carbon black filler is a versatile and widely used additive in the manufacturing industry. Its unique properties make it an essential component in the production of a wide range of rubber and plastic products, including tires, conveyor belts, hoses, gaskets, and many more.
Q: Recently bought an alarm clock, it is recommended to use carbon batteries. Nanfu battery is not good for the movement.
Carbon batteries are not recommended, and each carbon cell can permanently destroy one cubic meter of soil or more than a dozen cubic meters of water!Today's alkaline batteries are basically mercury free environmentally friendly batteries, which can be thrown away with common waste, with very little environmental damage!What's more, the durability of alkaline batteries is several times that of carbon! Now alkaline battery quality is good, basically will not leak alkaline material!If you think the alkaline battery is not good, it is recommended to use Ni MH rechargeable batteries. The battery is also environmentally friendly and can be recycled for long periods of time,Initial input slightly larger, but if the correct use and charging, cost-effective! Especially for toys with large power consumption!The disadvantage of Ni MH batteries is memory, which needs to be used up and recharged, and is easy to discharge. It loses ten percent of the battery power every monthA few! But now there is a new type of Ni MH rechargeable battery, which is introduced by the manufacturer as if it has a semi discharge of less than fifteen percent and a low memoryOf! More suitable for clocks and watches, remote control, these electrical appliances! What's more, the voltage of Ni MH battery is usually 1.2V, which is lower than that of ordinary dry electricityPond. It is recommended to study the charging, storage and usage of NiMH rechargeable batteries. The correct method of use can save moreMoney, more environmentally friendly!The earth is my home, and it depends on everyone!!
Q: How long will it last? 10National Day would like to do carbon baking ribs at home, how to do, how to marinate? For how long?.. Don't copy sticky posts. Now, tour TV's "eating meat" on earth is recorded in a grilled pork chop, wondering how that is done
Raw material: pork ribsPractice:1, pig ribs cut into several sections of the same size.2, marinate with seasoning, put half a day, can also be the night before pickling, put into the refrigerator.(seasoning: soy sauce, oyster sauce, cooking wine, sugar, geraniol, cinnamon, anise, pepper, garlic, ginger, red pepper)3, put into the microwave oven, high heat for five minutes, in order to make the ribs faster cooked.Pan, covered with foil, preheat the oven to 180 degrees, 180 degrees inside, keep on, under fire, and cook for twenty minutes, during which out of turn two times. (the temperature is too high, will be outside coke is not familiar)5, put the pan bottom oil, add a tablespoon of old godmother flavor stir fermented black bean sauce, and then pickled pork ribs with feed juice poured into, boil, thicken, pour in the ribs. (with some colorful vegetables.)
Q: What is the impact of carbon emissions on agriculture?
Agriculture is significantly impacted by carbon emissions, with effects seen in both crop production and livestock farming. The primary consequence of increased carbon emissions is climate change, which has the ability to change weather patterns and temperatures. These alterations can disrupt the delicate balance necessary for successful agriculture. The rising temperatures caused by carbon emissions result in increased evaporation, which can diminish soil moisture and hinder crop growth. This leads to more frequent and severe droughts, causing water scarcity and reduced crop yields. Moreover, extreme weather events like floods, storms, and hurricanes become more common, causing extensive damage to crops and farmland. Another outcome of carbon emissions is the modification of atmospheric composition. Elevated levels of carbon dioxide (CO2) stimulate the growth of specific weeds and invasive species, which compete with crops for vital resources such as sunlight, water, and nutrients. This competition ultimately results in decreased crop yields and lower-quality produce. Furthermore, carbon emissions contribute to air pollution, including the formation of ozone. High levels of ozone can harm plant tissues and limit photosynthesis, thus reducing crop productivity. Livestock health is also negatively affected by ozone, leading to decreased growth rates and milk production. The impact of carbon emissions on agriculture extends beyond crop production to livestock farming. Changes in climate and temperature can adversely affect animal health and productivity. Heat stress becomes a significant issue, resulting in reduced fertility, lower milk yields, and increased vulnerability to diseases. Additionally, livestock require sufficient access to water and nutritious feed, which can become scarce due to droughts and heightened competition for resources. In conclusion, carbon emissions have a detrimental impact on agriculture, affecting both crop production and livestock farming. Climate change, altered weather patterns, and increased competition for resources all contribute to reduced yields, lower-quality produce, and decreased livestock productivity. It is crucial to address and mitigate carbon emissions to ensure the sustainability and resilience of the agricultural sector in the face of these challenges.
Q: What are the impacts of carbon emissions on the stability of estuaries?
Carbon emissions have significant impacts on the stability of estuaries, which are delicate and unique ecosystems where freshwater and saltwater mix. One of the main consequences of carbon emissions is the phenomenon of ocean acidification. As carbon dioxide is released into the atmosphere through human activities such as burning fossil fuels, a portion of it is absorbed by the ocean, leading to an increase in the acidity of the water. This increased acidity has detrimental effects on the stability of estuaries. Estuaries are home to a diverse range of marine life, including fish, shellfish, and plants. However, the increased acidity caused by carbon emissions disrupts the delicate balance of these ecosystems. Many species of shellfish, such as oysters and clams, rely on calcium carbonate to build their shells and skeletons. In more acidic waters, the availability of carbonate ions decreases, making it harder for these organisms to form and maintain their protective structures. This can lead to a decline in shellfish populations, affecting the entire estuarine food chain. Additionally, the increased acidity affects the reproductive processes of many marine organisms. Fish and other species that reproduce in estuaries may experience reduced reproductive success due to changes in the pH of the water. This can result in a decline in population numbers, leading to a loss of biodiversity within estuaries. Furthermore, the stability of estuaries is also impacted by the rising sea levels caused by carbon emissions. As global temperatures increase, glaciers and ice caps melt, causing the sea level to rise. Estuaries, which are often located in low-lying coastal areas, are particularly vulnerable to this phenomenon. The rising sea levels can lead to increased salinity levels in estuaries, as saltwater intrudes further into freshwater areas. This can disrupt the delicate balance of the ecosystem, affecting the plants and animals that rely on specific salinity levels for survival. In conclusion, carbon emissions have a range of negative impacts on the stability of estuaries. The phenomenon of ocean acidification disrupts the delicate balance of these ecosystems, affecting the reproduction and survival of various species. Additionally, the rising sea levels caused by carbon emissions further destabilize estuaries by altering salinity levels. It is crucial to reduce carbon emissions and mitigate the effects of climate change to protect and preserve these valuable ecosystems.
Q: What are the different methods of measuring carbon dioxide levels in the atmosphere?
There exist various techniques for assessing carbon dioxide levels in the atmosphere. These techniques encompass direct measurement, remote sensing, and ice core analysis. Direct measurement stands as the most precise and extensively employed approach. It encompasses collecting air samples from numerous locations worldwide and analyzing them using gas analyzers. These analyzers possess the capability to gauge the concentration of carbon dioxide in the air, typically expressed in parts per million (ppm). Remote sensing represents an alternative method for measuring carbon dioxide levels. It involves the utilization of satellite-based instruments to observe and quantify the quantity of carbon dioxide present in the Earth's atmosphere. These instruments can detect the absorption and scattering of sunlight caused by carbon dioxide molecules, thereby rendering valuable data concerning its concentration. Ice core analysis constitutes a historical technique for assessing carbon dioxide levels. Scientists delve deep into polar ice sheets and procure ice cores. These ice cores harbor trapped air bubbles from hundreds or even thousands of years ago. By analyzing the carbon dioxide content within these bubbles, scientists can recreate past atmospheric carbon dioxide levels and juxtapose them with contemporary levels. Each of these methods possesses its own merits and limitations. Direct measurement furnishes real-time data and precise measurements, albeit necessitating an extensive network of monitoring stations worldwide. Remote sensing offers a global perspective and the ability to cover large areas, yet it may struggle to resolve fine-scale spatial variations. Ice core analysis delivers valuable long-term historical data, but its applicability is confined to specific regions and solely permits indirect measurements. The amalgamation of these techniques empowers scientists to obtain a comprehensive comprehension of carbon dioxide levels in the atmosphere, aiding in the monitoring and evaluation of the impact of human activities on climate change.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches