• Stainless Steel Welded Pipe ASTM A312/A316 System 1
  • Stainless Steel Welded Pipe ASTM A312/A316 System 2
  • Stainless Steel Welded Pipe ASTM A312/A316 System 3
Stainless Steel Welded Pipe ASTM A312/A316

Stainless Steel Welded Pipe ASTM A312/A316

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT or LC
Min Order Qty:
46 m.t.
Supply Capability:
25 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

1、Structure of /Stainless Steel Welded Pipe ASTM A316/A312Description

    Stainless steel welded pipe is actually a cover term, covering a wide range of alloy and making them suitable for different attributes that are used in a very wide and large numbers of different industries. Stainless steel pipe is resistant to erosion, highly flexible, powerful, easy to use, and can be done in distinct approaches, which means that more and more stainless steel was used as a construction material for large-scale, high impact buildings. 







2Main Features of the Stainless Steel Welded Pipe ASTM A358/A312


• High manufacturing accuracy

• High strength

• Small inertia resistance







3Stainless Steel Welded Pipe ASTM A316/A312Images



Stainless Steel Welded Pipe ASTM A312/A316

Stainless Steel Welded Pipe ASTM A312/A316







 

4Stainless Steel Welded Pipe ASTM A316/A312/A778 Specification

Size 

Outside   diameter          Outside                                                                           Thickness
SCH 5SSCH 10SSCH 20SSCH 40S
(A)(B)mmmmmmmmmm
35014′355.63.964.787.9211.13
40016′406.44.194.787.9212.7
45018′457.24.194.787.9214.27
50020′5084.785.549.5315.09
55022′558.84.785.549.5315.09
60024′609.65.546.359.5317.48
65026′660.45.547.9212.717.48
70028′711.25.547.9212.717.48
75030′7626.357.9212.717.48
80032′812.8 7.912.717.48
85034863.6 7.9212.717.48
90036′914.4 7.9212.719.05
100040′1016 9.53  

 

Tolerances on dimensions table 

Tolerances on dimensions table 
StandardOutside(mm)Thickness(mm)Length(mm)
ASTM A312≤48.26-0.4+No special provisions(Unspecified)-12.50%Appoint   LengthDefinite cut length+6.40
48.26~114.3000
114.30~219.080.8 
219.08~457.201.6 
457~660-4 
660~864-5 
 864~1219-5.6 
JIS G345930.00   ±0.30≥30.00 ±1.00%2.00   ±0.20≥2.00 ±10%Appoint   LengthDefinite cut Length
GB/T 1277113.00   ±0.2013.00~40.00 ±0.30≥40.00 ±0.80%≤4.00 +0.50   -0.604.00 ±10%20
EN 10217-7D1±1.50%   with±0.75mm(min)D2±1.00% with±0.50mm(min)D3±0.75% with±0.30mm(min)T1±15.00%   with±0.60mm(min)T2±12.5% with±0.40mm(min)T3±10.00% with±0.20mm(min)≤6000 +5.00   -06000~12000 +10.00 -0
D4±0.5%   with±0.10mm(min)T4±7.50%   with±0.15mm(min)
 T5±5.00%   with±0.10mm(min)
 EN ISO 1127

 

 




5FAQ of Stainless Steel Welded Pipe ASTM A316/A312/A778 



How is the quality of your products?
    Our products are manufactured strictly according to national and internaional standard, and we take a test on every pipe before delivered out. If you want see our quality certifications and all kinds of testing report, please just ask us for it.
Guaranteed: If products’ quality don’t accord to discription as we give or the promise before you place order, we promise 100% refund.


How about price?
     Yes, we are factory and be able to give you lowest price below market one, and we have a policy that “ for saving time and absolutely honest business attitude, we quote as lowest as possible for any customer, and discount can be given according to quantity”,if you like bargain and factory price is not low enough as you think, just don’t waste your time.Please trust the quotation we would give you, it is professional one.

Any question, pls feel free to contact us !

 


Q:How are steel pipes tested for mechanical strength?
Steel pipes are typically tested for mechanical strength through various destructive and non-destructive testing methods. Destructive tests involve subjecting the pipes to tension, compression, or bending forces until failure occurs, allowing the measurement of their ultimate tensile strength, yield strength, and elongation. Non-destructive tests, such as ultrasonic testing, magnetic particle inspection, or radiographic examination, are also conducted to detect any internal or surface defects that may affect the mechanical strength of the pipes. These tests ensure that steel pipes meet the required standards and specifications in terms of their mechanical strength.
Q:What are the different shapes available for steel pipes?
There are several different shapes available for steel pipes, including round, square, rectangular, and oval.
Q:Can steel pipes be galvanized?
Yes, steel pipes can be galvanized. Galvanizing is a process of applying a protective zinc coating to steel or iron to prevent corrosion. The steel pipes are submerged in a bath of molten zinc, which forms a metallurgical bond with the steel, creating a corrosion-resistant coating. Galvanizing is commonly used in various applications, such as plumbing, construction, and outdoor structures, to extend the lifespan of steel pipes and prevent rusting.
Q:How are steel pipes used in nuclear power plants?
Steel pipes are extensively used in nuclear power plants for various purposes. They are primarily used for the transportation of coolant, such as water or gas, which helps in removing heat from the reactor core. Steel pipes are also used to convey steam generated by the reactor to the turbine, where it is used to generate electricity. Additionally, steel pipes are utilized for the transportation of various fluids, such as lubricants and chemicals, for different processes within the plant. The durability, strength, and resistance to high temperatures and pressure make steel pipes an ideal choice for these critical applications in nuclear power plants.
Q:How do you determine the maximum allowable stress for steel pipes?
In order to establish the maximum allowable stress for steel pipes, several factors must be taken into account. These factors encompass the type of steel, the dimensions of the pipe, and the operating conditions it will be exposed to. To begin with, the type of steel chosen is a pivotal aspect in determining the maximum allowable stress. Different steel grades possess distinct mechanical properties, including yield strength, tensile strength, and elongation. These properties define the steel's capacity to withstand stress before deforming or failing. Hence, it is crucial to comprehend the specific grade of steel employed in the pipes to ascertain the maximum allowable stress. Additionally, the dimensions of the pipe are of utmost importance. The external diameter, wall thickness, and length all impact the pipe's strength and ability to handle stress. By calculating the cross-sectional area and moment of inertia, engineers can evaluate the pipe's resistance to bending and axial stresses. These calculations, combined with the material properties, facilitate the determination of the maximum allowable stress. Finally, the operating conditions under which the pipe will be utilized play a critical role. Variables such as temperature, pressure, and the presence of corrosive substances can significantly influence the maximum allowable stress of a steel pipe. Elevated temperatures can alter the mechanical properties of the steel, while high pressures can induce additional stress. Furthermore, the presence of corrosive substances can lead to material degradation and diminish the pipe's strength. Thus, considering these operational factors is essential when determining the maximum allowable stress. To summarize, the process of establishing the maximum allowable stress for steel pipes entails assessing the specific steel grade, the pipe's dimensions, and the operating conditions. By analyzing these factors, engineers can ensure that the steel pipe is designed and utilized within its safe stress limits.
Q:Can steel pipes be used for underground culverts?
Yes, steel pipes can be used for underground culverts. Steel pipes are commonly used for underground culverts due to their strength, durability, and resistance to corrosion. They provide a reliable solution for conveying water or other fluids underground, ensuring efficient drainage and water management systems.
Q:How are steel pipes inspected for quality?
Steel pipes are inspected for quality through various methods such as visual inspection, non-destructive testing techniques like ultrasonic testing, magnetic particle inspection, and radiographic testing. These inspections help identify any defects, cracks, or imperfections in the pipes, ensuring they meet the required quality standards. Additionally, mechanical tests such as tensile strength and hardness tests may also be conducted to assess the structural integrity of the steel pipes.
Q:How are steel pipes protected against abrasive wear?
Steel pipes are protected against abrasive wear through various methods such as applying protective coatings, using abrasion-resistant liners, and implementing proper maintenance and monitoring practices.
Q:Can steel pipes be used for power plant construction?
Steel pipes are indeed suitable for power plant construction. They find wide usage in power plants for multiple purposes, including steam, water, and air/gas piping. Their strength, durability, and capacity to endure high temperatures and pressures make them highly recommended. Moreover, steel pipes possess exceptional resistance to corrosion, a crucial factor in power plant settings where various fluids and gases are transported. Furthermore, their easy weldability permits efficient installation and maintenance. In conclusion, steel pipes emerge as a dependable and economical option for constructing power plants.
Q:How do steel pipes handle ground freezing and thawing?
Steel pipes are highly resistant to the effects of ground freezing and thawing. The inherent strength and durability of steel make it an ideal material for handling these thermal cycles. When the ground freezes, steel pipes are able to withstand the expansion forces exerted by the freezing water without any significant damage. The structural integrity of steel pipes remains intact even under extreme cold conditions. During thawing, steel pipes also fare well due to their ability to contract without compromising their strength. The material's flexibility ensures that it can accommodate the contraction of the ground without causing any structural issues. Steel pipes do not crack or break when exposed to the rapid temperature changes associated with thawing. Furthermore, steel pipes have a smooth internal surface, which reduces the risk of ice formation and subsequent blockages. This is particularly important in areas with frequent freezing and thawing cycles, as it helps to maintain a consistent flow of fluids or gases through the pipes. In summary, steel pipes are an excellent choice for handling ground freezing and thawing. Their strength, durability, and ability to withstand temperature fluctuations make them a reliable and long-lasting solution in such environments.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords