• 15 Kw Solar Inverter GW3600D-DI (High Frequency Isolated) System 1
  • 15 Kw Solar Inverter GW3600D-DI (High Frequency Isolated) System 2
  • 15 Kw Solar Inverter GW3600D-DI (High Frequency Isolated) System 3
15 Kw Solar Inverter GW3600D-DI (High Frequency Isolated)

15 Kw Solar Inverter GW3600D-DI (High Frequency Isolated)

Ref Price:
get latest price
Loading Port:
Shanghai
Payment Terms:
TT OR LC
Min Order Qty:
12 pc
Supply Capability:
1000 pc/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

GW3000/3600/4200D-DI (High Frequency Isolated)

1.SPECIFATION

 is the new on-grid PV inverter which integrated with most advanced technology, come with 10 years warranty,

and are designed to meet the new IEE1547 requirements for the North American market. Also it’s suitable for thick-film modules.

Easy installation and simple operation make them ideal for residential and small-to-medium commercial applications.

GoodWe inverters, with ever-increasing efficiency and high stability,

could ensure you better overall performance of solar power systems and shorter payback periods.

2.Datasheet

On grid solar inverter GW3600D-DI (High Frequency Isolated)

3. Solar inverter certification

EN 61000

VDE 0126-1-1

C10/11

G83/2

UTE C15-712-1

AS4777

CQC

CE10-21

EN50438

4.solar inverter picture

On grid solar inverter GW3600D-DI (High Frequency Isolated)

FAQ

1. What price for each watt?

It depends on the efficiency of the solar cell, quantity, and delivery date and payment terms.

2. How long can we receive the product after purchase?

In the purchase of product within three working days, We will arrange the factory delivery as soon as possible. The pacific time of receiving is related to the state and position of customers. Commonly 7 to 10 working days can be served.

We can provide you not only the solar material but also the off grid solar system, we can also provide you service with on grid plant.

4. How do you pack your products?

We have rich experience on how to pack the solar cell to make sure the safety on shipment; we could use wooden box or pallet as buyer's preference.

5. Can you do OEM for us?

Yes, we can.

Q: What is the role of a power backup system in a solar inverter?
The role of a power backup system in a solar inverter is to provide a reliable source of electricity during periods of insufficient sunlight or power grid outages. It ensures uninterrupted power supply to critical loads, such as essential appliances or equipment, by utilizing stored energy from batteries or alternative power sources. This backup system enhances the overall reliability and functionality of the solar inverter, making it more suitable for both grid-tied and off-grid applications.
Q: Are there any electromagnetic interference concerns associated with solar inverters?
Yes, there are electromagnetic interference (EMI) concerns associated with solar inverters. Solar inverters convert the direct current (DC) generated by solar panels into alternating current (AC) that can be used to power homes and businesses. During this conversion process, high frequency switching occurs, which can generate EMI. EMI refers to the disturbance caused by electromagnetic radiation from electronic devices, which can interfere with the proper functioning of other electronic devices in close proximity. In the case of solar inverters, the EMI generated can potentially affect nearby electronic equipment, such as radios, televisions, or communication systems. To mitigate these concerns, solar inverter manufacturers often comply with relevant EMI standards and regulations. These may include limits on the amount of electromagnetic radiation emitted by the inverters and the use of shielding materials to reduce EMI. Additionally, some inverters incorporate filters or other EMI suppression techniques to minimize the interference created. It is important for solar installers and system designers to consider EMI concerns when selecting and positioning solar inverters. Proper installation and grounding techniques can help reduce EMI issues. Additionally, local regulations and guidelines should be followed to ensure compliance with EMI standards and to minimize potential interference with other electronic devices. Overall, while there are EMI concerns associated with solar inverters, proper design, installation, and adherence to relevant standards can effectively mitigate these concerns and ensure the smooth operation of both the solar system and other electronic equipment in the vicinity.
Q: How do you connect solar panels to a solar inverter?
To connect solar panels to a solar inverter, you need to follow these steps: 1. Locate the positive (+) and negative (-) terminals on the solar panels. 2. Connect the positive terminal of the first solar panel to the positive terminal of the second panel using a solar PV cable or connector. Repeat this process for other panels if necessary. 3. Connect the negative terminal of the first panel to the negative terminal of the second panel using the same method as above. 4. Once all panels are connected in series or parallel, connect the positive terminal of the last panel to the positive terminal of the solar inverter. 5. Finally, connect the negative terminal of the last panel to the negative terminal of the solar inverter. It's important to ensure that the connections are secure and tightened properly to prevent any loose connections. Following the manufacturer's instructions and consulting a professional electrician or solar installer is recommended for a safe and efficient installation.
Q: What is the role of a solar inverter in power factor correction?
The role of a solar inverter in power factor correction is to adjust the power factor of the solar power system to ensure efficient energy conversion. It helps in balancing the reactive power and real power, leading to improved overall power quality and reduced system losses.
Q: How does a solar inverter handle reactive power compensation?
A solar inverter handles reactive power compensation by integrating power factor correction techniques. It actively monitors the power factor of the connected load and adjusts the reactive power flow accordingly. This ensures that the inverter delivers a balanced combination of active (real) power and reactive power, resulting in improved system efficiency and reduced power losses.
Q: How does a solar inverter interact with the electrical grid?
A solar inverter interacts with the electrical grid by converting the direct current (DC) electricity generated by solar panels into alternating current (AC) electricity that is compatible with the grid. It synchronizes the generated electricity with the grid's voltage and frequency, allowing excess power to be fed back into the grid for others to use, and drawing additional power from the grid when needed. This interaction ensures efficient utilization of solar energy and seamless integration of solar power into the existing electrical grid infrastructure.
Q: How does a solar inverter handle grid faults and disturbances?
A solar inverter is designed to handle grid faults and disturbances by continuously monitoring the grid conditions. In the event of a fault or disturbance, such as a voltage or frequency fluctuation, the solar inverter will quickly disconnect from the grid to ensure the safety of the system. Once the fault is resolved and the grid conditions stabilize, the solar inverter will reconnect to the grid and resume normal operation, ensuring a reliable and stable power supply.
Q: Can a solar inverter be installed indoors or outdoors?
A solar inverter can be installed both indoors and outdoors, depending on the specific requirements and preferences of the installation.
Q: How does a solar inverter protect against voltage fluctuations?
A solar inverter protects against voltage fluctuations by continuously monitoring the voltage levels from the solar panels. It then adjusts the output voltage to match the required voltage for the connected devices or the grid. This ensures a stable and consistent voltage supply, preventing any damage that could be caused by sudden voltage spikes or drops.
Q: How does a solar inverter handle voltage sags and swells?
A solar inverter handles voltage sags and swells by continuously monitoring the voltage levels of the grid. When it detects a voltage sag (a drop in voltage below a certain threshold) or a voltage swell (a sudden increase in voltage above a certain threshold), the inverter adjusts its operation to compensate for the deviation. It can either decrease or increase the power output to ensure that the electricity being fed into the grid remains within acceptable voltage limits. This helps to stabilize the grid and protect connected devices from potential damage.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords