• Srne Solar Inverter - High Efficiency Off-Grid Pure Sine Wave Power Inverter 700W, 24V-220V/230V, STI700 System 1
  • Srne Solar Inverter - High Efficiency Off-Grid Pure Sine Wave Power Inverter 700W, 24V-220V/230V, STI700 System 2
  • Srne Solar Inverter - High Efficiency Off-Grid Pure Sine Wave Power Inverter 700W, 24V-220V/230V, STI700 System 3
Srne Solar Inverter - High Efficiency Off-Grid Pure Sine Wave Power Inverter 700W, 24V-220V/230V, STI700

Srne Solar Inverter - High Efficiency Off-Grid Pure Sine Wave Power Inverter 700W, 24V-220V/230V, STI700

Ref Price:
get latest price
Loading Port:
China Main Port
Payment Terms:
TT or LC
Min Order Qty:
-
Supply Capability:
-

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Description

STI series is a sine wave power frequency inverter which can convert 12V or 24V DC to 220VAC or 230VAC 50Hz based on full digital and intelligent design. The inverter can be applied in many fields especially for solar photovoltaic power system.

 

 

Features:

·Complete isolation-type inverter technology, noiseless output
·Adoption of advanced SPWM technology, pure sine wave output
·Dynamic current loop control technology to ensure inverter reliable operation.
·Wide DC input voltage range
·Excellent EMC design
·Low output harmonic distortion(THD≤3%)
·LED indicators display input voltage range, load power range, normal output & failure state
·Optional energy saving mode
·Wide working temperature range (industrial level)
·Continuous operation at full power

 

Protections

·Output Short Circuit protection
·Overload protection
·Input reverse polarity protection
·Input low voltage protection
·Input over voltage protection
·Inverter abnormal protection
·Overheating protection

High Efficiency Off-Grid Pure Sine Wave Power Inverter 700W, 24V-220V/230V,STI700

Specification:

Types

SHI600-12

SHI600-22

Nominal Battery  Voltage

12V

24V

Input Voltage  Range

10.8~16Vdc

21.6~32Vdc

No Load Current

≤0.7A

≤0.45A

Output Wave

Pure Sine Wave

Output Voltage

220Vac±3% / 230Vac±10%

Continuous Power

600W

Power 10 sec

900W

Power 1.5 sec

1200W

Surge Power

1350W

Frequency

50/60Hz±0.2%

Distortion THD

≤ 3% (resistive load)

Efficiency at Rated Power

≥91%

≥92%

Max. Efficiency

≥93%

≥94%

Terminal

25mm2

Dimensions

295×186×82mm

Installation

150×178mm

Hole Size

Φ6mm

Net Weight

2.3kg

Working  Temperature

-20℃~ +50℃

Storage  Temperature

-35℃~ +70℃

Humidity  

< 95% (N.C.)

Altitude

< 5000m(Derating to operate according to IEC62040 at a height exceeding 1000m)

Insulation  Resistance

  Between DC input terminals and metal case: ≥550MΩ;

  Between AC output terminals and metal case: ≥550MΩ.

 

FAQ

Off Grid VS On Grid Panels, what's the difference?

The differences between both panels are related to the system where they are going to be installed. 

On-grid installations, as the name said, are thought to feed the produced energy into the grid and for that it is important to have the biggest voltage that it is allowed (1000VDC in Europe, 600 VDC in USA). For a defined power, more voltage means less current (P=V*I) and less losses.
 

In off-grid installations it is different because you must storage the energy into batteries. Batteries usually work at 12, 24 or 48 VDC and off-grid photovoltaic modules work at the maximum power point (mpp) near this voltage (see the datasheets). So the controller that charges the batteries works also near the batteries voltage.
 

Your limiting factor here is going to be this controller. You have to see what is the maximum voltage and the maximum current that it can work with, upstream (photovoltaic modules) and downstream (batteries and
inverter). Then you have to dimension your PV array (Voltage and Current).

Does inverter long warranty mean high quality?

SMA did bump up the warranty to 10 years when CSI demanded all inverter manufacturers to do so. The European Sunny Boys are only warrantied for 5 years. 

iPhones only have a one year warranty. Does that mean Apple products aren't reliable? Enphase offers a 25 year warranty on their
ibut only one year on their inverters monitoring. Does this mean their monitoring is not as reliable as their inverter? Of course not. 

Offering long warranties have very real costs, especially for publicly traded companies like SMA. If we were to offer a 25 year warranty, we would have to hold a higher reserve on our balance sheet, making our products more expensive. We think that our customers would rather have our high quality products at a lower cost.
 

Start-ups invariably offer long warranties to make up for lack of track record or the perception of quality problems. As the unfortunate recent events at Solyndra have
shown, long warranties offered by start-ups can have limited practical value. 

Analogies can be drawn to the wind industry: in the early days, customers requested very long warranties (20 years or so), since it was the wild west and no one had a clue about long term O&M requirements for these big new turbines. Now that the wind industry has matured, turbine warranties are again very short (2 years is typical) since the large suppliers have a track record of shipping quality product that does not fail when properly maintained. You could say that PV today is like the wild west environment in wind 10 years ago.

 

 

Q: Can a solar inverter be used with a smart home automation system?
Yes, a solar inverter can be used with a smart home automation system. Many solar inverters today come equipped with built-in communication capabilities, such as Wi-Fi or Ethernet connectivity, which allows them to be integrated into a smart home automation system. This integration enables homeowners to monitor and control their solar power production and consumption remotely through a smartphone app or a central control panel. With a smart home automation system, users can track real-time energy generation, adjust settings, and receive notifications about system performance or any issues that may arise. This integration not only enhances the convenience and efficiency of managing solar power but also allows for better optimization and synchronization with other smart devices and appliances in the home.
Q: What is the role of a maximum power point tracker in a solar inverter?
The role of a maximum power point tracker (MPPT) in a solar inverter is to optimize the energy harvesting efficiency of the solar panels. It continuously monitors the output voltage and current of the panels and adjusts the operating point to ensure maximum power extraction from the panels. By tracking the maximum power point, the MPPT allows the solar inverter to generate the highest possible energy output from the available sunlight, thus maximizing the overall system performance.
Q: What is the function of a solar inverter in a solar power system?
The function of a solar inverter in a solar power system is to convert the direct current (DC) electricity generated by the solar panels into alternating current (AC) electricity that can be used to power household appliances and feed into the electrical grid.
Q: Can a solar inverter be used in regions with extreme weather conditions?
Yes, solar inverters can be used in regions with extreme weather conditions. However, it is important to choose an inverter that is specifically designed and rated for such conditions. Inverters with high-quality components and robust construction can withstand extreme temperatures, humidity, and other weather-related challenges. Additionally, proper installation and maintenance practices are crucial to ensure the longevity and optimal performance of the inverter in extreme weather conditions.
Q: Are there any maintenance requirements for solar inverters?
Yes, solar inverters do require regular maintenance to ensure optimal performance and longevity. This can include cleaning or replacing air filters, inspecting and tightening electrical connections, checking for any physical damage or corrosion, and updating firmware or software as needed. Additionally, monitoring the inverter's performance and generating reports can help identify any issues or inefficiencies that may require maintenance or repairs.
Q: Can a solar inverter be used with different AC voltages?
No, a solar inverter cannot be used with different AC voltages. It is designed to convert the DC power generated by solar panels into a specific AC voltage that is compatible with the electrical grid. Using it with a different AC voltage could lead to inefficient operation or even damage the inverter.
Q: What is the difference between a grid-tied and off-grid solar inverter?
A grid-tied solar inverter is designed to work with the traditional utility grid. It converts the DC power generated by solar panels into AC power that can be used in the home or business, and any excess power can be fed back into the grid. In contrast, an off-grid solar inverter is used in standalone systems, where there is no connection to the utility grid. It converts the DC power generated by solar panels into AC power for immediate use or for storage in batteries, ensuring a reliable power supply in isolated areas or during power outages.
Q: What are the common issues and troubleshooting steps for a solar inverter?
Common issues with solar inverters can include issues with the inverter not turning on, no power output, low power output, intermittent power output, or error messages displayed on the inverter. Here are some troubleshooting steps to address these issues: 1. Check the power supply: Make sure that the inverter is properly connected to the power source and that there is no issue with the electrical supply. Check the circuit breaker or fuse box to ensure it has not tripped. 2. Inspect the wiring: Examine the wiring connections to ensure they are secure and not damaged. Loose or disconnected wires can cause power issues. If any damage is found, consider contacting a professional electrician to repair or replace them. 3. Clean solar panels: Dust, debris, or shading on solar panels can reduce the power output. Clean the panels using a soft cloth or a hose. If there is shading from nearby trees or structures, consider trimming or removing them if possible. 4. Check for error messages: If the inverter displays an error message, refer to the user manual or manufacturer's website for the meaning of the error code and recommended troubleshooting steps. If necessary, contact the manufacturer's customer support for further assistance. 5. Monitor the weather conditions: Solar inverters may have reduced power output during cloudy or overcast days. However, if the power output is consistently low even in optimal weather conditions, there may be an issue with the inverter itself. 6. Reset the inverter: Some inverters have a reset button or option. Try resetting the inverter to its factory settings, but keep in mind that doing so may erase any customized settings or configurations. 7. Firmware updates: Check if there are any available firmware updates for your specific inverter model. Updating the firmware can sometimes resolve issues and improve performance. 8. Consult a professional: If the troubleshooting steps above do not resolve the issue, it is recommended to contact a professional solar installer or electrician. They have the expertise and equipment to diagnose and repair more complex issues with solar inverters. Remember, safety should always be a priority when troubleshooting electrical equipment. If you are unsure or uncomfortable with any troubleshooting steps, it is best to seek professional assistance to avoid any potential hazards.
Q: Are there any noise or vibration concerns associated with solar inverters?
Yes, there can be noise and vibration concerns associated with solar inverters. However, the extent of these concerns will vary depending on the specific make and model of the inverter. Some inverters may produce a low humming or buzzing noise during operation, which is generally considered normal. However, if the noise becomes excessively loud or disruptive, it may indicate a malfunctioning or poorly installed inverter. Similarly, vibrations can occur in solar inverters, especially if they are not properly secured or mounted. These vibrations can potentially cause additional noise or even lead to damage if left unaddressed. Proper installation and maintenance practices, such as securely fastening the inverter and regularly inspecting for any signs of loose components or abnormal vibrations, can help mitigate these concerns. It is important to note that advancements in technology have led to the development of quieter and more efficient solar inverters. When selecting an inverter for a solar system, it is advisable to research and choose a reputable brand that has a track record of producing inverters with minimal noise and vibration issues. Additionally, consulting with a professional solar installer can provide valuable insights and recommendations to ensure a smooth and quiet operation of the solar inverter.
Q: Can a solar inverter be used in areas with limited roof space or installation options?
Yes, a solar inverter can be used in areas with limited roof space or installation options. Solar inverters are flexible and can be installed in various locations such as walls, ground mounts, or even on poles, allowing for more flexibility in terms of space and installation options. Additionally, there are also compact and space-saving solar inverters available that can be used in areas with limited roof space.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords