• Solar Inverter USA - Grid Tied Solar Inverter BDE-310K System 1
  • Solar Inverter USA - Grid Tied Solar Inverter BDE-310K System 2
Solar Inverter USA - Grid Tied Solar Inverter BDE-310K

Solar Inverter USA - Grid Tied Solar Inverter BDE-310K

Ref Price:
get latest price
Loading Port:
Qingdao
Payment Terms:
TT OR LC
Min Order Qty:
10 unit
Supply Capability:
1000 unit/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Description:

 

A solar micro-inverter, converts direct current (DC) electricity from a single solar panel to alternating current (AC). The electric power from several micro-inverters is combined and fed into an existing electrical grid. Micro-inverters contrast with conventional string or central inverter devices, which are connected to multiple solar panels.

 

Characteristic & Advantages:

More Energy Harvest: Distributed MPPT allows10~25% more energy harvest
Simple: Modularized,single ac cable to the house
Reliability: Longer life time and almost 100% operation hours
Security: No high Voltage, makes safter environments
Inteligent : Monitoring each module
Savings: No dc components and significantly save labor cost

 

Grid Tied Solar Inverter  BDE-310K

 

Datasheet: 

 

BDE-310K

(DC)

 (kWp)

340

 (V)

900

(A)

760

MPPT 

>99%

MPPT  (V)

450 - 820

(AC)

 (kW)

310

 (V)

380/270

 (V)

310-450/210-310

 (Hz)

45.5—52.5

THD

<3%  ()< p="">

 

0.92 () -- 0.92()

  

 

97.7% ()/ 98.6% ()

 

98.6%()/ 98.4% ()

 (W)

<10< p="">

C  (II)

 

 

IP20

-35℃ -- +50℃

0-95% 

128*64  VFD 

RS485, RS232, , 

 (-- mm)

800*1800*2200

 (kg)

1500/1060


 

Q: What are the installation requirements for a solar inverter?
The installation requirements for a solar inverter typically include a stable mounting surface, proper ventilation and clearance space, a compatible electrical connection, and compliance with local building codes and regulations. Additionally, the solar inverter should be installed in a location that receives adequate sunlight for efficient operation.
Q: How does a solar inverter convert DC to AC?
A solar inverter converts direct current (DC) into alternating current (AC) by utilizing a two-step process. First, it converts the DC electricity generated by solar panels into a high-frequency AC waveform. This is done by using electronic components, such as transistors or power semiconductors, to switch the DC input on and off rapidly. Next, the high-frequency AC waveform is transformed into a stable and synchronized AC output that is suitable for use in home or commercial electrical systems. This is achieved through the use of filters, transformers, and other circuitry that adjust the voltage, frequency, and waveform of the AC output to match the requirements of the utility grid or the electrical load being powered. Overall, the solar inverter's key function is to efficiently convert the DC electricity produced by solar panels into a usable form of AC electricity that can be used to power appliances, machinery, and other electrical devices.
Q: What is the role of a power factor correction circuit in a solar inverter?
The role of a power factor correction circuit in a solar inverter is to improve the power factor of the inverter, ensuring that the power drawn from the grid is used efficiently. By reducing the reactive power and bringing it closer to the real power, the power factor correction circuit helps minimize energy losses and optimize the overall performance of the solar inverter.
Q: What is the difference between an on-grid and off-grid solar inverter?
An on-grid solar inverter is designed to convert the DC power produced by solar panels into AC power that can be fed directly into the electrical grid. It synchronizes with the grid and adjusts the power output accordingly. In contrast, an off-grid solar inverter is used in standalone solar power systems that are not connected to the grid. It stores excess power in batteries and converts DC power to AC power for use in the off-grid system.
Q: How does a solar inverter handle voltage fluctuation during cloud cover?
A solar inverter handles voltage fluctuation during cloud cover by continuously monitoring and adjusting the output voltage to compensate for the reduced solar energy input. This is typically achieved through advanced control algorithms that optimize the inverter's power output to maintain a stable voltage level, ensuring a smooth transition during periods of cloud cover and minimizing any disruptions to the electrical system.
Q: What is the role of a DC-DC converter in a solar inverter?
The role of a DC-DC converter in a solar inverter is to convert the direct current (DC) generated by the solar panels into the appropriate voltage level required for the inverter to convert it into alternating current (AC) electricity. This conversion ensures efficient power transfer from the solar panels to the grid or for use in residential or commercial applications.
Q: Can a solar inverter be used with a solar-powered refrigerator?
Yes, a solar inverter can be used with a solar-powered refrigerator. The solar inverter is responsible for converting the direct current (DC) electricity generated by the solar panels into alternating current (AC) electricity, which is required to power the refrigerator. By using a solar inverter, the solar-powered refrigerator can operate efficiently and effectively by utilizing the solar energy collected from the panels.
Q: How do you calculate the total power capacity for a solar inverter?
To calculate the total power capacity for a solar inverter, you need to consider two main factors: the maximum power output of the solar panels and the efficiency of the inverter. First, determine the maximum power output of the solar panels in watts. Then, divide this value by the efficiency of the inverter, usually given as a percentage. The resulting value will give you the total power capacity of the solar inverter in watts.
Q: Generally a large grid-connected photovoltaic power plant will have several inverters
, This method is simple to design, easy maintenance, but also for the power grid harmonics smaller, good power quality!
Q: What is the role of a power factor controller in a solar inverter?
The role of a power factor controller in a solar inverter is to regulate and optimize the power factor of the system. It ensures that the power factor remains close to unity, helping to improve the efficiency and performance of the solar inverter. By controlling the power factor, the controller minimizes reactive power generation and reduces energy losses, ultimately enhancing the overall power quality and stability of the solar inverter system.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords