FC 98.5% Calciend Petroleum Coke in steady Quality
- Loading Port:
- Tianjin
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 20.6
- Supply Capability:
- 2060 m.t./month
OKorder Service Pledge
OKorder Financial Service
You Might Also Like
Brief introduction
Calcined Petroleum Coke comes from delayed coke which extracted from oil refinery. Although Calcined Petroleum Coke contains a little bit higher level of sulfur and nitrogen than pitch coke, the price advantage still makes it widely used during steel-making and founding as a kind of carbon additive/carburant.
BaoSteel is world famous organization. This calcined petroleum coke's raw material is from Bao Steel, which has great quality guarantee. It is more and more crucial for the steel industry and inreplacable
Features
Our product has follwing advantages:
The morphology, chemistry and crystallinity of recarburisers
have a major impact on the overall casting cost. The combined
application and cost benefits, which are derived through the
use of Desulco, enable foundries to manufacture castings in a
highly cost effective manner.
reduces
Recarburiser consumption
Power consumption
Inoculant consumption
MgFeSi consumption
Furnace refractory wear
Scrap rate
Tap to tap time
Slag inclusions risk
Chill
increases
Casting microstructure
Productivity
Process consistency
Specifications
Products | CPC | ||
F.C.% | 98.5MIN | 98.5MIN | 98MIN |
ASH % | 0.8MAX | 0.8MAX | 1MAX |
V.M.% | 0.7 MAX | 0.7 MAX | 1 MAX |
SULFUR % | 0. 5MAX | 0. 7MAX | 1MAX |
MOISTURE % | 0.5MAX | 0.5MAX | 1MAX |
Pictures
FAQ
1 What is the package?
In jumbo bag with/without pallet
2 What is the delivery time?
25 days after receiving the workable LC or down payment
3 What is the payment term?
T/T, L/C,D/P,D/A
- Q: What is diamond?
- Diamond is a naturally occurring precious gemstone that is composed of carbon atoms arranged in a unique crystal lattice structure, known for its exceptional hardness, brilliance, and durability.
- Q: How can individuals reduce their carbon footprint?
- Individuals can reduce their carbon footprint by adopting sustainable lifestyle choices such as conserving energy, using public transportation or carpooling, eating a plant-based diet, reducing waste, and supporting renewable energy sources. Additionally, individuals can also make a difference by planting trees, supporting eco-friendly products, and spreading awareness about climate change.
- Q: How is carbon used in the production of steel?
- Carbon is a crucial element in the production of steel as it directly affects the properties and characteristics of the final product. In the steelmaking process, carbon is primarily used as an alloying element, which means it is added in controlled amounts to modify the steel's composition. One of the most common methods of steel production is through the basic oxygen furnace (BOF) process. In this process, carbon is added to the molten iron to create the desired steel grade. The amount of carbon added determines the steel's hardness, strength, and other mechanical properties. Generally, higher carbon content results in harder and stronger steel. Carbon is also used in another steelmaking process called the electric arc furnace (EAF) process. Here, recycled steel scrap is melted down using an electric arc to produce new steel. Carbon is added during this process to adjust the carbon content as required for the desired steel grade. Furthermore, carbon plays a crucial role in the heat treatment of steel. Through processes like carburizing and quenching, carbon is used to enhance the surface hardness and wear resistance of steel components. This is particularly important in industries such as automotive, aerospace, and construction, where the durability and strength of steel are paramount. In summary, carbon is essential in the production of steel as it directly influences the mechanical properties and overall quality of the final product. From adjusting the carbon content to controlling the heat treatment processes, carbon is a vital component in the steelmaking industry.
- Q: How does carbon affect the formation of permafrost thawing?
- The formation and thawing of permafrost can be greatly influenced by carbon. Permafrost, which consists of frozen soil, rock, and organic matter, remains at freezing temperatures for at least two consecutive years. It acts as a natural carbon sink, storing vast amounts of organic carbon from deceased plants and animals accumulated over thousands of years. As permafrost thaws, this stored carbon begins to decompose, releasing greenhouse gases like carbon dioxide and methane into the atmosphere. The carbon released from permafrost thawing contributes to the overall rise in greenhouse gas levels, worsening the effects of climate change. Furthermore, as permafrost thaws, it becomes more susceptible to erosion and subsidence, resulting in landscape changes and the additional release of carbon. This process can create a positive feedback loop, where the released carbon further speeds up permafrost thawing, leading to more carbon emissions. Moreover, the thawing of permafrost can also impact the stability of infrastructure constructed on frozen ground, such as roads, buildings, and pipelines, causing significant economic and environmental consequences. To summarize, carbon plays a crucial role in the formation and thawing of permafrost. The release of carbon from thawing permafrost contributes to climate change, accelerates the thawing process, and has various environmental and economic impacts. It is essential to address carbon emissions and find ways to mitigate permafrost thawing in order to combat climate change and preserve the stability of these frozen ecosystems.
- Q: How does carbon affect the formation of ground-level ozone?
- Carbon is a key contributor to the formation of ground-level ozone, also known as smog. When carbon-containing pollutants, such as vehicle exhaust and industrial emissions, are released into the atmosphere, they react with sunlight and other pollutants to form ground-level ozone. This reaction occurs more rapidly in the presence of high levels of carbon, leading to increased ozone concentrations.
- Q: How does carbon impact the prevalence of cyclones?
- Carbon emissions contribute to the prevalence of cyclones by intensifying the greenhouse effect, leading to warmer sea surface temperatures. Warmer oceans provide more energy for cyclones to form and strengthen, increasing their frequency and intensity. Additionally, higher levels of carbon dioxide in the atmosphere can alter atmospheric circulation patterns, creating more conducive conditions for cyclone development.
- Q: How dnf advanced carbon ashes?
- Before 70, strengthening with carbon, then the activities in the mall to sell high carbon, have to use coupons to buy, that is to improve the success rate of strengthening, now is also the time to rest, 80 edition, replaced by strengthening the body of the colorless, carbon was automatically replaced colorless (1: 5) senior carbon system did not automatically change on the left
- Q: Rod box material, there is a kind of material called carbon fiber, who knows this material is good?
- Very good, carbon fiber is made of organic fiber after a series of heat treatment into, inorganic fiber with high performance carbon content is higher than 90%, is a new material with excellent mechanical properties, the intrinsic properties of natural carbon material with, and both the textile fiber soft processing, is a new generation of fiber. Carbon fiber is a new dual-use material for military and civilian use. It is the key material of technology intensive and politically sensitive. It is the only material that does not drop in the high temperature inert environment above 2000 degrees celsius. Carbon fiber steel accounted for less than 1/4, the tensile strength of composite is generally above 3500Mpa, is 7-9 times that of steel, carbon fiber has superior corrosion resistance, it can also be safe and sound in the dissolution of gold and platinum "aqua".
- Q: What is carbon offsetting in the hospitality industry?
- Carbon offsetting in the hospitality industry refers to the practice of taking actions to compensate for the greenhouse gas emissions produced by a hotel or resort. This can involve investing in projects that reduce or remove carbon dioxide from the atmosphere, such as renewable energy initiatives or reforestation efforts. By offsetting their emissions, the hospitality industry aims to reduce their environmental impact and contribute to the global fight against climate change.
- Q: How does carbon impact the availability of renewable energy sources?
- Carbon impacts the availability of renewable energy sources in several ways. Firstly, carbon emissions from fossil fuel combustion contribute to climate change, which can have detrimental effects on the generation of renewable energy. For instance, rising temperatures and changing weather patterns can reduce the efficiency of solar panels and wind turbines. Secondly, the reliance on carbon-intensive energy sources limits the investment and development of renewable energy technologies. By transitioning to cleaner energy sources, such as solar, wind, and hydroelectric power, we can reduce carbon emissions and enhance the availability and viability of renewable energy options.
Send your message to us
FC 98.5% Calciend Petroleum Coke in steady Quality
- Loading Port:
- Tianjin
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 20.6
- Supply Capability:
- 2060 m.t./month
OKorder Service Pledge
OKorder Financial Service
Similar products
Hot products
Hot Searches