• 4000W CHV100A Series High-Performance Solar Inverter from Shenzhen System 1
  • 4000W CHV100A Series High-Performance Solar Inverter from Shenzhen System 2
  • 4000W CHV100A Series High-Performance Solar Inverter from Shenzhen System 3
4000W CHV100A Series High-Performance Solar Inverter from Shenzhen

4000W CHV100A Series High-Performance Solar Inverter from Shenzhen

Ref Price:
get latest price
Loading Port:
China main port
Payment Terms:
TT OR LC
Min Order Qty:
10 pc
Supply Capability:
10000 pc/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

CHV100A Series High-performance Inverter

Specification

AC 3PH 660V15% 37630kW

AC 3PH 1140V15% 452800kW

INVT CHV100A series vector control inverters are the products special for the mining industry, including 660V/1140V voltage degree and 15kW~2500kW power range. The open structural features and modular product design combined with the integrated INVT solutions in mining industry fully meet the individual needs of customers in the industry.

Futures

Control mode: vector control (VC), sensorless vector control(SVC), space voltage vector control (SVPWM);

Starting torque: vector control 0Hz/180% (VC); sensorless vector control 0.5Hz/150% (SVC);

Be compatible with synchronous and asynchronous motor control;

Support master-slave synchronous control of multi-motor drive;

Support multiple communication methods such as Modbus, Profibus-DP, Ethernet and CAN communication;

Support a variety of extension interfaces such as extension card, communication card, LCD keypad, synchronous PG card and asynchronous PG card;

Up to 38 protection functions such as overcurrent, overvoltage, overload, undervoltage, phase loss and shortcircuit;

Provide input and output filters special for inverters, complying with the special EMC requirements in the industry.

 

 

 

CHV100A Series High-performance Inverter from Shenzhen

 

FAQ

1. Have any design tool and how to use it?

Shine Design is the system design software just for inverters, It can conduct installers to figure out panel numbers for a system, panel numbers for each string, and which inverter model is suitable for the system. Moreover, it can print a design report after input all necessary parameters, can calculate DC/AC wire wastage, annual generation, etc.

2. Does the inverter have monitoring solutions for residential system?

For small rating system, we have wired two monitoring solution (ShineNet via RS232 or RS485). (a) Local wireless monitoring solution (ShineVision via RF module communication) (b) Global wireless monitoring solution (WIFI module via WIFI network)

3. Do you have free solution for monitoring?

ShineNet is an inverter monitoring software run in Windows XP, Windows Vista, Windows 7 operating system. It can monitor inverter via RS232 (or RS232 convert to USB cable) and RS485 wire connection. Customers can purchase the cable locally to get the inverter monitored, it is simple.

Q: Can a solar inverter be used in regions with high levels of lightning activity?
Yes, a solar inverter can be used in regions with high levels of lightning activity. However, it is important to install appropriate lightning protection measures to ensure the safety and functionality of the solar inverter system. This can include surge protection devices and grounding systems to mitigate potential damage caused by lightning strikes.
Q: What is the typical lifespan of the capacitors in a solar inverter?
The typical lifespan of capacitors in a solar inverter can vary depending on various factors such as the quality of the capacitors, operating conditions, and maintenance practices. However, on average, capacitors in a solar inverter are expected to have a lifespan of around 10 to 15 years.
Q: Can a solar inverter be used with a backup generator?
Yes, a solar inverter can be used with a backup generator. In fact, it is a common setup in off-grid or hybrid systems. The solar inverter works by converting the direct current (DC) produced by the solar panels into alternating current (AC) that can be used to power household appliances. When the solar panels are not generating enough power, the backup generator kicks in to provide the necessary electricity. This combination ensures a reliable and uninterrupted power supply.
Q: What are the potential risks of overloading a solar inverter?
The potential risks of overloading a solar inverter include overheating, reduced lifespan of the inverter, and even permanent damage to the equipment. Overloading can also result in power fluctuations and instability in the electrical system, leading to potential safety hazards. It is crucial to ensure that the solar inverter is appropriately sized and capable of handling the electrical load to avoid these risks.
Q: How does a solar inverter communicate with other devices in a solar power system?
A solar inverter communicates with other devices in a solar power system through various communication protocols and interfaces. One common method is through wired connections using communication interfaces such as RS485 or Ethernet. These interfaces allow the inverter to establish a direct connection with other devices such as solar panels, batteries, and monitoring systems. In addition to wired connections, wireless communication methods are also used. This includes technologies like Wi-Fi, Zigbee, or Bluetooth, which enable the inverter to connect with other devices within a certain range. Wireless communication is often used for monitoring and control purposes, allowing users to remotely access and manage their solar power system. The communication between the solar inverter and other devices is crucial for the overall performance and efficiency of the solar power system. It enables the inverter to receive important data from the solar panels, such as voltage, current, and temperature, which is necessary for optimal power conversion. The inverter can then adjust its operations based on this information to maximize the power output and ensure system safety. Furthermore, communication with other devices like batteries allows the solar inverter to manage the charging and discharging cycles, optimizing energy storage and utilization. This ensures that excess energy generated by the solar panels is efficiently stored in the batteries and used during periods of low sunlight. Overall, the communication capabilities of a solar inverter play a crucial role in the integration and coordination of different components within a solar power system. It enables efficient power conversion, monitoring, and control, ultimately maximizing the performance and benefits of solar energy generation.
Q: Can a solar inverter be used with different grid voltages?
No, a solar inverter is designed to work with specific grid voltages and is not compatible with different grid voltages.
Q: Can a solar inverter be used in regions with high levels of dust or debris?
Yes, a solar inverter can be used in regions with high levels of dust or debris. However, it is important to regularly clean and maintain the inverter to ensure optimal performance and prevent any damage caused by the accumulation of dust or debris.
Q: What is a solar inverter?
A solar inverter is an essential component of a solar power system that converts the direct current (DC) generated by solar panels into alternating current (AC) electricity suitable for use in households and businesses. It ensures optimal performance and connectivity between the solar panels and the electrical grid, allowing for efficient utilization of solar energy.
Q: How does the maximum AC current rating affect the performance of a solar inverter?
The maximum AC current rating of a solar inverter determines the maximum amount of power that the inverter can convert from DC to AC electricity. If the current rating is too low, the inverter may not be able to handle the peak power output from the solar panels, resulting in reduced performance and potential overheating or failure. On the other hand, if the current rating is high enough to handle the maximum power output, the solar inverter will perform efficiently and effectively, ensuring optimal energy conversion and output.
Q: Can a solar inverter be used in a solar-powered data center?
Yes, a solar inverter can be used in a solar-powered data center. A solar inverter is an essential component of a solar power system as it converts the direct current (DC) generated by solar panels into alternating current (AC) that can be used to power electrical devices in a data center. By using a solar inverter, a solar-powered data center can efficiently utilize the electricity generated from solar panels to meet its power requirements.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords