• CARBON STEEL PIPE FITTINGS ASTM A234 TEE 1'' System 1
  • CARBON STEEL PIPE FITTINGS ASTM A234 TEE 1'' System 2
  • CARBON STEEL PIPE FITTINGS ASTM A234 TEE 1'' System 3
  • CARBON STEEL PIPE FITTINGS ASTM A234 TEE 1'' System 4
CARBON STEEL PIPE FITTINGS ASTM A234 TEE 1''

CARBON STEEL PIPE FITTINGS ASTM A234 TEE 1''

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
5 m.t.
Supply Capability:
30000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

 

Specifications

1.we produce seamless steel pipe 
2.size:48-219*4.5-45mm 
3.ISO 9000 approved 
4.Market:south/east Asia,Mid-east,South America

seamless steel pipe

Material J55 K55 N80 L80 P110.etc

Standard ASTM  JIS

Usage conveying oil gas ,oil pipe line,pipe material collar,oil nature gas,

Packing wooden cases or wooden pallet ,export standard package

Others:Special design available according to requirement

Anti-corrosion available and high temperature resistence

Delivery time 30days

Payment term T/T  L/C

Name

API oil casing pipe

Out Diameter

Wall thickness

Material

Thread

Length

in

mm

5 1/2

139.7mm

6.20

J55/K55/N80

LTC/STC/BTC

R2

6.98

7.72

9.17

10.54

6 5/8

168.28mm

7.32

J55/K55/N80

LTC/STC/BTC

R2

8.94

10.59

12.06

12.06

8 5/8

219.08

8.94

H40

S/L/B

9  5/8R2

J55/K55

S/L/B

10.6

L80

L/B

12.7

L80  C95

L/B

14.15

P110

L/B

9 5/8

244.48

13.84

J55  K55

R2

15.11

L80

L/B

10 3/4

273.05

11.43

J55  K55

S/B/E

R2

13.84

P110

S/B

15.11

P110

S/B

11 3/4

298.45

12.19

J55  K55

S/B

R2

10.96

J55  K55

S/B

13 3/8

339.72

12.19

J55 K55 L80

S/B

R2

10.92

J55  K55

S/B

13.06

L80

S/B

  Coupling and thread can be required according to customer requirment

 

 

Q:What are the advantages of using steel pipes in construction?
There are several advantages of using steel pipes in construction. Firstly, steel pipes are incredibly strong and durable, providing excellent structural integrity and long-term reliability. They can withstand high pressure and heavy loads, making them suitable for various applications such as water and gas transportation, oil pipelines, and building frameworks. Secondly, steel pipes have a high resistance to corrosion, which ensures longevity and reduces maintenance costs. Additionally, steel pipes are versatile and can be easily customized to meet specific project requirements, as they come in various sizes, shapes, and thicknesses. Lastly, steel pipes are environmentally friendly, as they are recyclable, reducing the overall carbon footprint of construction projects.
Q:What are the different types of steel pipe coatings for chemical processing plants?
There are several types of steel pipe coatings commonly used in chemical processing plants, including epoxy coatings, polyethylene coatings, and fusion-bonded epoxy coatings. These coatings provide protection against corrosion and chemical damage, ensuring the longevity and safety of the pipes in such environments.
Q:What are the common factors affecting the flow capacity of steel pipes?
There are several common factors that can affect the flow capacity of steel pipes. 1. Pipe Diameter: The diameter of the pipe is one of the most significant factors affecting flow capacity. The larger the diameter, the greater the flow capacity as there is more area for the fluid to pass through. 2. Pipe Length: The length of the pipe also plays a role in flow capacity. Longer pipes generally have higher frictional losses, which can reduce the flow capacity. 3. Surface Roughness: The internal surface roughness of the steel pipe can impact flow capacity. Rough surfaces create more friction, which can reduce the flow rate. Smooth pipes, on the other hand, allow for smoother flow and higher flow capacity. 4. Fluid Properties: The properties of the fluid being transported through the steel pipe can affect flow capacity. Factors such as viscosity, temperature, and density can impact the flow rate. For example, highly viscous fluids will have lower flow capacity compared to less viscous fluids. 5. Pressure Drop: Pressure drop along the length of the pipe is another factor that affects flow capacity. As fluid flows through the pipe, there may be pressure losses due to friction, bends, or restrictions. Higher pressure drops result in lower flow capacity. 6. Pipe Material and Wall Thickness: The material of the steel pipe and its wall thickness can influence flow capacity. Different materials have different properties that can affect flow rates. Additionally, thicker walls can reduce the internal diameter of the pipe, resulting in lower flow capacity. 7. Pipe Layout and Fittings: The design and layout of the pipe system, including the presence of fittings such as valves, elbows, and tees, can impact flow capacity. These fittings can cause additional pressure drops and turbulence, reducing the overall flow rate. It is important to consider these factors when designing or evaluating a steel pipe system to ensure optimal flow capacity and efficiency.
Q:How are steel pipes used in the fabrication of storage tanks?
Steel pipes are commonly used in the fabrication of storage tanks due to their strength, durability, and corrosion resistance. They are utilized in various ways, such as forming the structural framework of the tank, creating the walls and roof, and connecting different components together. Additionally, steel pipes can be welded or bolted to ensure a secure and leak-proof construction, making them an ideal choice for storage tank fabrication.
Q:What is the cost of steel pipes?
The cost of steel pipes can vary depending on various factors such as size, grade, quantity, and current market conditions. It is best to contact a supplier or check with local suppliers to get an accurate and up-to-date price quote.
Q:What are the different methods of insulation for steel pipes?
There are several methods of insulating steel pipes, including applying a thermal insulation coating, using pipe wraps or jackets, using foam insulation, or utilizing heat shrink sleeves.
Q:What are the standard dimensions for steel pipes?
The standard dimensions for steel pipes vary depending on the application and industry. However, common sizes range from ½ inch to 48 inches in diameter and have various wall thicknesses based on the required strength and pressure rating.
Q:How are steel pipes used in the agricultural irrigation systems?
Due to their strength and durability, steel pipes are widely used in agricultural irrigation systems. These pipes effectively transport water from a well or reservoir to the fields where crops are cultivated. One major advantage of using steel pipes in such systems is their ability to withstand high pressure and heavy loads, making them suitable for the transportation of large volumes of water over long distances without the risk of bursting or breaking. Additionally, steel pipes exhibit a high resistance to corrosion, which is crucial in agricultural settings where they may come into contact with fertilizers or other chemicals. Aside from their durability, steel pipes offer a smooth interior surface that minimizes friction and ensures a consistent water flow. This is essential in irrigation systems as it guarantees even water distribution across the fields, promoting optimal crop growth. Moreover, steel pipes can be easily connected and configured to meet the specific layout and requirements of the irrigation system. In summary, steel pipes play a crucial role in agricultural irrigation systems by facilitating the efficient and reliable transportation of water to crops. Their strength, durability, resistance to corrosion, and smooth interior surface make them an ideal choice for these applications.
Q:What are the different types of steel pipe end connections?
Some of the different types of steel pipe end connections include threaded connections, socket weld connections, butt weld connections, and flanged connections.
Q:What are the different methods of wrapping steel pipes for corrosion protection?
There are several methods used for wrapping steel pipes to provide corrosion protection. These methods include the use of tapes, shrink sleeves, liquid coatings, and powder coatings. Each method has its advantages and disadvantages, and the choice of wrapping method depends on factors such as the environment, the required level of protection, and the budget.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords