• Carbon Powder Carburant Carbon Additives Good enough System 1
  • Carbon Powder Carburant Carbon Additives Good enough System 2
  • Carbon Powder Carburant Carbon Additives Good enough System 3
Carbon Powder Carburant Carbon Additives Good enough

Carbon Powder Carburant Carbon Additives Good enough

Ref Price:
get latest price
Loading Port:
Qingdao
Payment Terms:
TT OR LC
Min Order Qty:
10 m.t.
Supply Capability:
50000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Specifications of Carbon Powder 


- Carbon content: 94-99% 
- Size: 50, 80, 100,200, 150, 300, 500 ,800mesh, etc 
- Packing: 25kg or 1000kg


Carbon Powder Characteristics


Natural flake graphite has lubricity, high temperature resistant, conductive thermal conductivity, leakage, corrosion resistance, not good performance degradation



Carbon powder grain size


According to user requirements adjustment, main screening efforts for 50, 80, 100, 120, 150, 200, 325 mesh, etc



Carbon Powder Purposes


- As non-metallic mineral resources, has important defense strategic role
- Can be used for high and new technical projects, is of great economic and social benefits
- Is the metallurgical industry refractory material
- Is the chemical industry all kinds of corrosion of vessels, general equipment of carbon products

- Light industry is in pencil, ink and the main raw material of artificial diamond
- Is the electrical industry production carbon electrode and electrode carbon rods, battery materials





Q: How does carbon contribute to the structure of DNA?
The structure of DNA relies heavily on carbon, as it plays a critical role in its composition. Carbon is a crucial element in the formation of the sugar-phosphate backbone, which is an integral part of the DNA molecule. This backbone consists of alternating sugar and phosphate molecules, with the sugar molecule being deoxyribose in DNA. Deoxyribose sugar contains five carbon atoms, making carbon a significant component in its structure. These carbon atoms provide stability and rigidity to the backbone, ensuring the overall structure of the DNA molecule remains intact. Additionally, carbon also contributes to the formation of the nitrogenous bases that form the ladder-like structure of DNA. There are four nitrogenous bases in DNA: adenine (A), guanine (G), cytosine (C), and thymine (T). Carbon atoms are present in the structure of each of these bases, giving them their distinct chemical properties. Various functional groups containing carbon, such as amino and keto groups, actively participate in hydrogen bonding and stacking interactions that determine the base pairing within the DNA double helix. To summarize, carbon is an indispensable element in the structure of DNA. It not only provides stability and rigidity to the sugar-phosphate backbone but also plays a crucial role in the formation of the nitrogenous bases. The unique properties of carbon enable DNA to maintain its double helix structure and facilitate the accurate transmission of genetic information.
Q: What kinds of barbecue carbon do you have?
The carbon has uniform size, long burning time, uniform fire, no smoke and no expensive price. Many professional barbecue shops choose this kind of carbon. The disadvantage is that it should not ignite. If only two or three people barbecue, with this carbon, then people are full, carbon has not used up, can not help but feel a little wasted.
Q: How is carbon used in the production of carbon nanomaterials?
Carbon is essential in creating carbon nanomaterials due to its role as the foundation for their distinct structure and properties. Various techniques are employed to manufacture carbon nanomaterials, including carbon nanotubes and graphene, all of which rely on manipulating and organizing carbon atoms. One commonly used method for producing carbon nanomaterials is chemical vapor deposition (CVD). In this process, a carbon-containing gas, such as methane or ethylene, is introduced into a high-temperature furnace. Within the furnace, the gas decomposes, releasing carbon atoms. Subsequently, these carbon atoms reform and create nanoscale structures, like carbon nanotubes or graphene, on a substrate or catalyst material. Another approach involves vaporizing carbon-containing compounds, such as carbon black or graphite, through techniques like laser ablation or arc discharge. The vaporized carbon then undergoes condensation and solidification, resulting in carbon nanomaterials with specific structures and properties. Both methods allow for precise manipulation of carbon atoms by controlling temperature, pressure, and the presence of catalysts or additives. This manipulation leads to the desired carbon nanomaterials, which possess exceptional mechanical, electrical, and thermal properties due to the unique arrangement of carbon atoms, such as the hexagonal lattice structure of graphene or the cylindrical structure of carbon nanotubes. In conclusion, carbon is a crucial element in carbon nanomaterial production, providing the necessary atoms and influencing their structure and properties. Understanding and controlling carbon's behavior at the atomic level empower scientists and engineers to develop nanomaterials with diverse applications, ranging from electronics and energy storage to medicine and environmental remediation.
Q: Can barbecue carbon still have the effect of absorbing formaldehyde?
3) photocatalyst, it is like as photosynthesis makes use of natural light catalytic decomposition of formaldehyde, benzene and other harmful gases, and the main component of titanium dioxide photocatalyst is very safe, allowing food and cosmetics to add trace. At present, many brands in the market, Japan in the development of photocatalyst is better.
Q: Why does the carbon content of steel increase and the mechanical properties change?
Steel is an alloy of iron and carbon in 0.04%-2.3% between carbon content. In order to ensure its toughness and plasticity, the main elements in addition to iron, carbon and carbon content is generally not more than 1.7%. steel, and silicon, manganese, sulfur and phosphorus. Classification method of steel variety, there are seven kinds of main methods:1, according to quality classification(1) ordinary steel (P = 0.045%, S = 0.050%)(2) high quality steel (P, S = 0.035%)(3) high quality steel (P = 0.035%, S = 0.030%)2. Classification by purpose(1) building and engineering steel: A. ordinary carbon structural steel; B. low-alloy structural steel; C. reinforced steel(2) structural steelSteel manufacturing machinery: A. (a) quenched and tempered steel; surface hardening (b) steel structure: including carburizing steel, surface hardened steel, with infiltration of ammonia (c) free cutting steel; steel structure; (d) cold forming steel: steel, cold stamping.B. spring steelC. bearing steel(3) tool steel: A. carbon tool steel; B. alloy tool steel; C. high speed tool steel(4) special performance steel: A. stainless acid resistant steel, B. heat-resistant steel, including oxidation resistant steel, hot strong steel, air valve steel, C. electric heating alloy steel, D. wear-resistant steel, e. low temperature steel, F. electrical steel(5) professional steel - such as bridge steel, shipbuilding steel, boiler steel, steel for pressure vessel, steel for agricultural machinery, etc.
Q: What are the consequences of increased carbon emissions on educational systems?
Increased carbon emissions have profound consequences on educational systems. One of the major consequences is the negative impact on the health and well-being of students and teachers. Carbon emissions contribute to air pollution, which can lead to respiratory problems, allergies, and other health issues. This, in turn, affects attendance rates and overall student performance. Furthermore, the effects of climate change caused by carbon emissions, such as extreme weather events and rising temperatures, can disrupt educational infrastructure. Schools may be closed or damaged due to hurricanes, floods, or heatwaves, leading to a loss of instructional time and disruption to the learning environment. In addition, increased carbon emissions contribute to the depletion of natural resources, such as water and food, which can have severe consequences for educational systems. In regions heavily reliant on agriculture, climate change can disrupt food production and availability, leading to malnutrition and reduced cognitive development in children. Lack of access to clean water can also impact sanitation in schools, increasing the risk of diseases and impacting students' ability to concentrate and learn. Moreover, the consequences of increased carbon emissions extend beyond physical health and infrastructure. Climate change is a complex global issue that requires an understanding of scientific concepts and critical thinking skills to address. However, inadequate education on climate change and its causes can hinder students' ability to comprehend and respond to this pressing issue. Furthermore, the economic impacts of climate change resulting from increased carbon emissions can strain educational systems. Governments may have to divert resources away from education to address climate-related disasters and their aftermath. Limited funding for education can lead to reduced access to quality education, inadequate facilities, and lower teacher salaries, all of which can negatively impact the overall quality of education provided. In conclusion, increased carbon emissions have wide-ranging consequences on educational systems. From the health and well-being of students and teachers to disruptions in infrastructure and access to resources, the effects of carbon emissions can hinder educational outcomes. Addressing climate change and reducing carbon emissions is crucial not just for the environment but also for the future of education.
Q: What are the effects of carbon emissions on the stability of coastal ecosystems?
Carbon emissions have significant negative effects on the stability of coastal ecosystems. The increased concentration of carbon dioxide in the atmosphere leads to ocean acidification, which disrupts the delicate balance of marine ecosystems. This acidity affects the growth and development of various organisms such as corals, shellfish, and other calcifying organisms, jeopardizing the health of coral reefs and shellfish populations. Additionally, rising sea levels, a result of climate change caused by carbon emissions, threaten coastal habitats, including wetlands and mangroves, which serve as critical nurseries and protective buffers against storms. Overall, carbon emissions contribute to the degradation and vulnerability of coastal ecosystems, compromising their stability and the services they provide to both marine life and human communities.
Q: Last night to go to the supermarket to buy 5 batteries, see Toshiba carbon batteries, I finally bought the super alkaline batteries, alkaline batteries and carbon is the difference in where? What kind of battery is best for digital cameras? Thank you
Alkaline battery discharge point, carbon battery's full name should be carbon zinc batteries (because it is the general level is the carbon rod electrode is the zinc skin), also known as zinc manganese battery, is currently the most common dry battery, it has the characteristics of low price and safe and reliable use, environmental factors based on the consideration.
Q: What do you mean by carbon fiber for 1K, 3K, 6K and 12K?
1K, 3K, 6K, 12K, in which K refers to the number of filaments. 1K is made up of 1000 single wires. If you don't understand, you can just put K and 1000 equal.
Q: What does "carbon neutrality" mean?
Carbon neutral (Carbon, Neutral)The new Oxford English dictionary published in 2006 annual vocabulary "Carbon Neutral", Chinese translated as "carbon neutral", global warming and carbon dioxide emissions are closely related, "carbon neutral" refers to the total emissions of carbon dioxide is calculated, and then put these emissions by planting digest compensation, do not give the earth additional greenhouse gas emissions (mainly including carbon dioxide, methane etc.) burden, achieve the purpose of environmental protection.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords