• Best Home Solar Inverter Compatible Solar Modules Poly-Crystalline 235W 156*156 Module System 1
  • Best Home Solar Inverter Compatible Solar Modules Poly-Crystalline 235W 156*156 Module System 2
Best Home Solar Inverter Compatible Solar Modules Poly-Crystalline 235W 156*156 Module

Best Home Solar Inverter Compatible Solar Modules Poly-Crystalline 235W 156*156 Module

Ref Price:
get latest price
Loading Port:
China Main Port
Payment Terms:
TT or LC
Min Order Qty:
-
Supply Capability:
-

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

 

Solar Module Descriptions: 

Solar Power Modules (known as Photovoltaics - PV) can generate electricity for your home or business, either as part of a stand-alone solar power system, or for buildings already connected to the local electricity network.

PV systems use the most abundant energy source on the planet, solar radiation, to generate electricity. They are silent, consume no fuel and generate no pollution. They also contribute to the reduction of greenhouse gas emissions; a 2kW PV system on a house will prevent the emission of about 40 tonnes of CO2 during its projected 30 year lifetime. Furthermore, the use of PV will reduce your electricity bills and exposure to fluctuating and steadily rising electricity prices.

 

 

 

Electrical Characteristics 

Max-power                                 

(W)     

235

Max-Power Voltage            

(V)

29.80

Max-Power Current             

(A)

7.88

Open-Circuit Voltage             

(V)

37

Short-Circuit Current            

 (A)

8.39

 

Mechanical Characteristics

Cable type, Diameter and Length

4mm2, TUV certified, 1000mm

Type of Connector

Compatible with MC4 plug

Arrangement of cells

6*10

Cell Size

156*156

Dimension

1580*1069*45

Weight

19.5Kg

Glass, Type and Thickness

High Transmission, Low Iron, Tempered Glass 3.2mm

 

Features 

  • Guaranteed positive tolerance 0/+5w ensures power output reliability

  • Strong aluminum frames module can bear snow loads up to 5400Pa and wind loads up to 2400Pa.

  • Excellent performance under low light environments (mornings evenings and cloudy days)

  • 12 years for product defects in materials and workmanship and 25 years for 80% of warranted minimum power.

  • Certifications and standards: IEC 61215.

  • Manufactured according to International Quality and Environment Management System (ISO9001, ISO14100).

 

FAQ

 

Q: How long is the warranty period for the solar modules?

15 years 90% of its nominal power rating.

25 years 80% of its nominal power rating

Q: When do I need a charge controller and why?

The safest way to figure out if you need a charge controller is to take Battery Amp Hour Capacity and divide this by the Solar Panel max. power amp rating. If the quotient is above 200, you don't need a controller. If the number is less than 200 than you need a controller.

For example if you have a 100 amp hour battery and a 10 watt panel, you take 100 and divide it by .6 (600mA) and you get 166.6. Since this is less than 200 you need a charge controller. If you have a five-watt panel in the above example you take 100 divided by .3 (300mA) and you come up with 333.3. Since this is larger than 200 you do not need a charge controller. However you still need a blocking diode, to prevent the battery from discharging to the panel at night. So as a general rule of thumb you don't need a charge controller unless you have more than five watts of solar for every 100-amp hours of battery capacity.

 

Q: Can a solar inverter be used in a mobile or RV application?
Yes, a solar inverter can be used in a mobile or RV application. A solar inverter is designed to convert the DC power generated by solar panels into AC power that can be used to power appliances and devices. In an RV or mobile application, a solar inverter can help convert the solar energy into usable power for charging batteries, running appliances, and powering electronic devices on the go.
Q: How does a solar inverter convert DC power into AC power?
A solar inverter converts DC power into AC power through a two-step process: first, it converts the DC power generated by solar panels into a high-frequency AC current, and then it uses a transformer to adjust the voltage of the AC current to match the desired grid voltage.
Q: Can a solar inverter be used with different grid voltages or frequencies?
No, a solar inverter cannot be used with different grid voltages or frequencies. Solar inverters are designed to convert the DC power generated by solar panels into AC power that matches the specific voltage and frequency of the grid it is connected to. Using a solar inverter with different grid voltages or frequencies can result in compatibility issues and potentially damage the equipment.
Q: Can a solar inverter be used in a solar-powered telecommunications system?
Yes, a solar inverter can be used in a solar-powered telecommunications system. The solar inverter is responsible for converting the direct current (DC) produced by solar panels into alternating current (AC) that can be used to power various devices in the system, including telecommunications equipment.
Q: Can a solar inverter be used in a hybrid solar system?
Yes, a solar inverter can be used in a hybrid solar system. A hybrid solar system combines both solar power and another source of energy, such as a battery or grid power. The solar inverter is responsible for converting the DC power generated by the solar panels into AC power that can be used in the home or fed back to the grid. In a hybrid solar system, the solar inverter would still perform this function, allowing the system to utilize both solar and other energy sources efficiently.
Q: Can a solar inverter be used with solar-powered electric vehicle charging stations?
Yes, a solar inverter can be used with solar-powered electric vehicle charging stations. The solar inverter is responsible for converting the direct current (DC) generated by solar panels into alternating current (AC) that can be used to charge electric vehicles. By integrating a solar inverter into the charging station, the solar energy can be efficiently harnessed and utilized to power the EV charging process.
Q: What is the role of a solar inverter in a solar-powered remote monitoring system?
The role of a solar inverter in a solar-powered remote monitoring system is to convert the direct current (DC) electricity generated by the solar panels into alternating current (AC) electricity that can be used to power the monitoring system. It also ensures that the electricity generated matches the requirements of the monitoring equipment, regulates the voltage, and assists in efficient power transmission and distribution.
Q: Can a solar inverter be used with different types of mounting systems?
Yes, a solar inverter can be used with different types of mounting systems. The solar inverter is responsible for converting the direct current (DC) generated by the solar panels into alternating current (AC) that can be used to power electrical devices. It is compatible with various mounting systems such as rooftop, ground-mounted, or pole-mounted installations, as long as the solar panels are properly connected to the inverter.
Q: Can a solar inverter be used with a solar-powered water desalination system?
Yes, a solar inverter can be used with a solar-powered water desalination system. A solar inverter is responsible for converting the DC power generated by solar panels into AC power that can be used by electrical devices. In the case of a solar-powered water desalination system, the solar panels generate DC power, which is then converted into AC power by the inverter to run the system's pumps, filters, and other electrical components. This allows the system to operate efficiently using clean and renewable energy from the sun.
Q: Can a solar inverter be used with different types of solar panel mounting systems?
Yes, a solar inverter can be used with different types of solar panel mounting systems. The function of a solar inverter is to convert the direct current (DC) produced by solar panels into alternating current (AC) that can be used to power household appliances or fed into the grid. The compatibility of the inverter with different mounting systems depends on the electrical specifications and requirements of the panels and the inverter. As long as the electrical connections and voltage requirements are met, a solar inverter can be used with various types of solar panel mounting systems such as roof-mounted, ground-mounted, or pole-mounted systems.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords