Anthracite Carbon Additive With High Quality
- Loading Port:
- Qingdao
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 10 m.t
- Supply Capability:
- 500000 m.t/month
OKorder Service Pledge
OKorder Financial Service
You Might Also Like
Specifications of Anthracite Carbide Additive:
- Produce from High Quality Anthracite
- High Carbon Content
- Low Ash and Sulfur
- Increase yield for EAF furnace
The main raw materials of carbon additive is anthracite coal which is known as unique high quality anthracite. There are at least seven different types of carbon additive. Carbon Additive are usually identified or characterized by its origin, chemistry and its physical properties.
The chemical properties of Carbon Additive are ash content, volatile matter, moisture content, and sulfur content, remaining of the properties will be from gas such as nitrogen, hydrogen and oxygen. Although some gas content can be chemically reacted, yet significant portions remain mixed or entrapped within the carbon.
Carbon additive has its two main uses which are namely as the fuel and additive. It is generally used in iron and steel smelting. Fixed carbon may reach above 95% if the carbon additive is used in steel melting or casting.
- Features:
Produce from high quality Anthracite Coal Reduce cost and increase yield due to characteristic of our process.
High carbon, density, specific resistance, lump-coal rate, chemical activity, clean coal yield and mechanical strength.
Low in ash and sulfur.
Increase yield for EAF furnace with more effective and efficient usage of scrap steel.
High absorption and no residue.
- Application:
Main application in steel production as a carburizer.
Used in EAF steel foundries and cast iron for improving carbon content.
Also used in production of carbon paste.
- Product Specification:
1 | Specification of Product | Units | CA01190 | CA01193 | CA01195 |
Fixed Carbon Sulfur (S) Ash content Nitrogen Moisture Volatile Matter (VM) | ≥% min % max % max % max % max % max | 90.0 0.50 8.0 0.30 0.5 1.5 | 93.0 0.25 6.5 0.30 0.5 1.2 | 95.0 0.25 5.0 0.30 0.3 1.0 | |
2 | Size: As per customer’s request | mm/% | 1-5/95 | 1-5/95 | 1-5/95 |
- Q:We need to make a poster... Of the 27 essential elements of the human body, I am in charge of carbon! I haven't found it for a long time! Who can help me? Urgent!!!!!!Can you find something very specific? Thank you
- It is well known that the basic units of life, amino acids and nucleotides, are derived from carbon skeletons. First, a carbon chain, a chain of carbon bound together, evolved into proteins and nucleic acids; then evolved primitive single cells, evolved worms, fish, birds, animals, monkeys, orangutans, and even humans.
- Q:What is carbon black used for?
- Carbon black serves a multitude of purposes across a range of industries. Its primary function lies in its use as a pigment and reinforcing filler in the production of rubber goods, including tires, hoses, and belts. The addition of carbon black significantly enhances the strength, durability, and resistance to abrasion of rubber materials. Furthermore, carbon black proves invaluable as a coloring agent in inks, paints, and coatings due to its exceptional light-absorbing properties. It imparts a deep black hue and improves the UV resistance of these products. Additionally, carbon black finds utility in the plastic manufacturing process where it acts as a filler, enhancing the mechanical properties of plastic components while simultaneously reducing costs. Within the energy sector, carbon black finds application as a conductive additive in batteries and fuel cells. Its high electrical conductivity significantly boosts the performance of these energy storage devices. Moreover, carbon black is employed in the production of electrodes for supercapacitors, thanks to its expansive surface area that facilitates efficient energy storage. Beyond this, carbon black also plays a role in the construction industry, serving as a reinforcing agent in concrete and asphalt. By bolstering the strength and durability of these materials, carbon black renders them more resistant to cracking and weathering. In summary, carbon black is a widely utilized substance across a diverse range of industries, including rubber production, plastic manufacturing, ink, paint, and coating formulation, energy storage device creation, and construction. Its properties as a pigment, reinforcing filler, coloring agent, and conductive additive make it an invaluable material in various industrial applications.
- Q:How does carbon impact the stability of tundra ecosystems?
- Carbon impacts the stability of tundra ecosystems in several ways. Firstly, carbon plays a crucial role in the formation and development of tundra soils. As plants in the tundra grow and photosynthesize, they absorb carbon dioxide from the atmosphere and convert it into organic matter through photosynthesis. This organic matter eventually decomposes and adds carbon to the soil, forming a layer of organic-rich permafrost that helps stabilize the ecosystem. Additionally, carbon in the form of vegetation acts as a protective layer against erosion in tundra ecosystems. The dense vegetation cover, composed of mosses, lichens, and shrubs, helps to hold the soil in place and prevents it from being washed away by wind or water. This stabilization is essential in the tundra, where the cold temperatures and short growing seasons limit plant growth and soil development. Furthermore, the stability of tundra ecosystems is influenced by the release of carbon dioxide and methane, which are greenhouse gases, from the melting permafrost. As global temperatures rise, the permafrost thaws, releasing stored carbon into the atmosphere. This process creates a positive feedback loop, as the released carbon contributes to further warming, which in turn accelerates permafrost thawing. This feedback loop has the potential to destabilize tundra ecosystems by altering the balance of plant and animal life, disrupting nutrient cycling, and increasing the risk of wildfires. Overall, carbon plays a vital role in maintaining the stability of tundra ecosystems through the formation of soils, erosion control, and the regulation of greenhouse gas emissions. Understanding and managing carbon dynamics in the tundra is crucial for preserving these unique and fragile ecosystems in the face of climate change.
- Q:What are fossil fuels and how are they formed?
- Fossil fuels, derived from ancient plants and animals, are natural resources utilized by humans for centuries as non-renewable sources of energy. Coal, oil, and natural gas comprise the three primary types of these fuels. The genesis of fossil fuels commences with organic matter sourced from plants and animals. Over millions of years, this organic material becomes deeply buried within the Earth's crust. Through the accumulation of sediment layers, the organic matter experiences increased pressure and heat, resulting in the process of fossilization. Regarding coal, the organic matter primarily consists of compacted and heated plant material. As the pressure and temperature rise, the plant material undergoes a gradual chemical transformation, eventually becoming coal. The formation of oil and natural gas follows a slightly different path. It originates from the remains of minuscule marine microorganisms, such as plankton, which settle at the ocean floor. Over time, these organic materials become buried beneath sediment layers, where they endure immense heat and pressure. Under these conditions, the organic matter undergoes a conversion into a mixture of hydrocarbons, serving as the primary constituent of oil and natural gas. Subsequently, the oil and gas migrate through porous rocks until they become trapped by impermeable layers, giving rise to oil or gas reservoirs. Overall, the formation of fossil fuels constitutes a gradual geologic process taking millions of years. It necessitates specific conditions of heat, pressure, and burial to convert organic matter into coal, oil, or natural gas. Due to their limited availability and the environmental consequences associated with their combustion, there is an increasing emphasis on transitioning towards renewable energy sources as a more sustainable alternative.
- Q:What is carbon offsetting in aviation?
- Carbon offsetting in aviation is a mechanism that aims to neutralize the carbon emissions produced by the aviation industry. As airplanes are a significant source of greenhouse gas emissions, carbon offsetting provides a way for airlines and passengers to take responsibility for their carbon footprint and contribute to the fight against climate change. The process of carbon offsetting involves calculating the amount of carbon dioxide and other greenhouse gases emitted during a flight and then investing in projects that reduce an equivalent amount of emissions elsewhere. These projects can include renewable energy initiatives, forest conservation, or methane capture projects. The idea is that the emissions reduced or removed by these projects offset the emissions produced by the aviation industry. To participate in carbon offsetting, airlines or passengers can purchase carbon offsets, which are essentially credits representing the reduction or removal of one metric ton of carbon dioxide or its equivalent. These offsets are generated by certified projects that meet strict standards and are independently verified. By investing in carbon offsets, the aviation industry can contribute to global efforts to reduce greenhouse gas emissions and mitigate the impact of air travel on climate change. It allows airlines and passengers to take immediate action to counteract the environmental consequences of flying, as the reduction or removal of emissions from offset projects helps to balance out the emissions produced by air travel. Carbon offsetting in aviation is not a means to justify or ignore the need for long-term solutions to reduce emissions from aircraft. It should be seen as a complementary measure to other strategies such as investing in more fuel-efficient aircraft, using sustainable aviation fuels, and implementing operational improvements. However, carbon offsetting does provide a valuable tool to mitigate emissions in the short term while the aviation industry works towards more sustainable practices.
- Q:What are the different types of carbon-based composites?
- There are several different types of carbon-based composites, each with unique properties and applications. Some of the most common types include carbon fiber reinforced polymers (CFRPs), carbon nanotube composites, and carbon fiber reinforced ceramics. Carbon fiber reinforced polymers (CFRPs) are perhaps the most well-known and widely used carbon-based composites. They consist of carbon fibers embedded in a polymer matrix, such as epoxy resin. CFRPs are lightweight, yet incredibly strong and stiff, making them ideal for applications where weight reduction and high strength are crucial, such as aerospace, automotive, and sporting goods industries. Carbon nanotube composites are another type of carbon-based composite that have gained significant attention in recent years. Carbon nanotubes are cylindrical structures made of carbon atoms arranged in a hexagonal lattice. When incorporated into a composite material, they enhance its mechanical, thermal, and electrical properties. Carbon nanotube composites have potential applications in fields such as electronics, energy storage, and structural materials. Carbon fiber reinforced ceramics combine the high strength and stiffness of carbon fibers with the exceptional high-temperature resistance of ceramics. These composites are commonly used in industries that require materials capable of withstanding extreme temperatures, such as aerospace, defense, and nuclear sectors. Carbon fiber reinforced ceramics offer an excellent balance between strength, thermal stability, and low weight. Other types of carbon-based composites include carbon fiber reinforced metals, where carbon fibers are embedded in a metal matrix, and graphene composites, which incorporate graphene sheets into a polymer or metal matrix. These composites offer unique properties such as high electrical conductivity, thermal stability, and mechanical strength, opening up possibilities for applications in areas like electronics, energy storage, and structural materials. Overall, carbon-based composites offer a diverse range of properties and applications, making them invaluable materials in various industries that require lightweight, strong, and durable materials.
- Q:How is carbon used in the production of nanotubes?
- Due to its distinctive characteristics and its capacity to establish robust covalent bonds, carbon is widely utilized in the manufacturing of nanotubes. Nanotubes are cylindrical arrangements composed entirely of carbon atoms that are organized in a hexagonal lattice. Two primary methods are employed to produce nanotubes: arc discharge and chemical vapor deposition (CVD). In the arc discharge technique, a high voltage is applied in an inert gas environment, causing a plasma arc of high temperature to form between two graphite electrodes. This arc vaporizes the carbon source material, and as the vaporized carbon atoms cool down, they condense and align themselves into nanotubes. This process enables the controlled creation of multi-walled carbon nanotubes (MWCNTs), which consist of concentric tubes nested within each other. On the contrary, chemical vapor deposition involves the decomposition of carbon-containing gases, such as methane or ethylene, on a catalyst surface at elevated temperatures. The catalyst, typically composed of transition metals like iron, nickel, or cobalt, facilitates the growth of nanotubes by providing active sites for carbon atoms to attach and form tubular structures. Depending on the reaction conditions, the resulting nanotubes can be either single-walled (SWCNTs) or multi-walled. In both methods, carbon serves as an essential building block. Its exceptional carbon-carbon bonding nature enables the creation of sp2 hybridized carbon atoms, resulting in a sturdy and stable lattice structure. This structure imparts nanotubes with outstanding mechanical, electrical, and thermal properties, making them highly sought after in various fields such as electronics, materials science, and medicine. Additionally, carbon's versatility allows for the production of functionalized nanotubes by incorporating other elements or molecules into their structure. This is accomplished through chemical modification of the carbon framework, which permits the attachment of diverse functional groups or nanoparticles. Functionalized nanotubes can exhibit improved properties or be customized for specific applications, further underscoring the significance of carbon in nanotube production. In conclusion, carbon plays a crucial role in the production of nanotubes, owing to its unique properties, ability to form strong covalent bonds, and versatility. It serves as the ideal building block for creating these remarkable structures with a wide range of applications.
- Q:How is carbon used in the production of ink?
- Carbon is used in the production of ink in various forms, such as carbon black or activated carbon. Carbon black is a fine black powder that is derived from the incomplete combustion of petroleum products. It is commonly used as a pigment in inks to provide a deep black color. Carbon black particles are small and have a high surface area, which allows them to disperse evenly in the ink and provide a consistent color. Activated carbon, on the other hand, is a highly porous form of carbon that is produced by heating carbonaceous materials, such as wood or coconut shells, at high temperatures. It is used in ink production as a filter or purification agent. Activated carbon has a large surface area with numerous microscopic pores, which enable it to adsorb contaminants, impurities, and unwanted substances from the ink. This helps improve the quality and stability of the ink, ensuring a smooth and consistent flow. In addition to its use as a pigment and a purification agent, carbon is also utilized in ink production as a conductive material. Carbon-based inks are commonly used in applications that require electrical conductivity, such as printed circuit boards, sensors, or electronic devices. These inks contain carbon particles dispersed in a liquid medium, allowing them to be printed or deposited onto a substrate to create conductive pathways. Overall, carbon plays a crucial role in the production of ink by providing color, acting as a purification agent, and enabling electrical conductivity. Its versatile properties and wide range of applications make it an essential component in the ink manufacturing process.
- Q:How does carbon dioxide affect the formation of smog?
- Carbon dioxide does not directly contribute to the formation of smog. However, it indirectly influences smog formation by contributing to climate change, which can lead to increased temperatures and the formation of ground-level ozone, a key component of smog.
- Q:What are the applications of carbon nanowires?
- Due to their unique properties and characteristics, carbon nanowires find wide-ranging applications across various fields. Some of the main uses of carbon nanowires include: 1. Electronics: Carbon nanowires serve as conducting channels in electronic devices like transistors and interconnects. Their small size, high electrical conductivity, and ability to handle high current densities make them ideal for nanoelectronics. 2. Energy storage: Carbon nanowires prove useful in energy storage devices such as batteries and supercapacitors. Their excellent electrical conductivity and high surface area enable efficient charge and energy storage, leading to enhanced performance and longer lifespan. 3. Sensors: Carbon nanowires function as sensing elements in different types of sensors. Their high sensitivity to temperature, pressure, or gas concentration changes makes them suitable for applications in environmental monitoring, healthcare, and industrial sensing. 4. Biomedical applications: Carbon nanowires hold promise in biomedical applications, including drug delivery systems and tissue engineering. They can be modified with specific molecules to target and deliver drugs to particular cells or tissues. Additionally, their biocompatibility and high mechanical strength make them suitable for scaffolds in tissue engineering. 5. Nanoelectromechanical systems (NEMS): Carbon nanowires contribute to the construction of NEMS devices, which are miniature mechanical systems operating at the nanoscale. These devices find applications in sensing, actuation, and data storage, and carbon nanowires possess the necessary mechanical and electrical properties for their operation. 6. Nanocomposites: Carbon nanowires are capable of enhancing the mechanical, electrical, and thermal properties of various materials. They can reinforce polymers, ceramics, and metals, resulting in improved strength, conductivity, and heat dissipation in the resulting nanocomposites. 7. Optoelectronics: Carbon nanowires find utility in optoelectronic devices like photodetectors and light-emitting diodes (LEDs). Their ability to emit light, low electrical resistance, and high electron mobility make them suitable for applications in displays, lighting, and optical communications. In conclusion, the applications of carbon nanowires are diverse and expanding, with the potential to revolutionize fields such as electronics, energy storage, sensing, biomedicine, and more. Ongoing research and development in this field are expected to uncover even more exciting applications in the future.
1. Manufacturer Overview |
|
---|---|
Location | |
Year Established | |
Annual Output Value | |
Main Markets | |
Company Certifications |
2. Manufacturer Certificates |
|
---|---|
a) Certification Name | |
Range | |
Reference | |
Validity Period |
3. Manufacturer Capability |
|
---|---|
a)Trade Capacity | |
Nearest Port | |
Export Percentage | |
No.of Employees in Trade Department | |
Language Spoken: | |
b)Factory Information | |
Factory Size: | |
No. of Production Lines | |
Contract Manufacturing | |
Product Price Range |
Send your message to us
Anthracite Carbon Additive With High Quality
- Loading Port:
- Qingdao
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 10 m.t
- Supply Capability:
- 500000 m.t/month
OKorder Service Pledge
OKorder Financial Service
Similar products
Hot products
Hot Searches