• 30kW PV Grid-Tied Inverter Dual MPPT-US Solar Inverter System 1
  • 30kW PV Grid-Tied Inverter Dual MPPT-US Solar Inverter System 2
  • 30kW PV Grid-Tied Inverter Dual MPPT-US Solar Inverter System 3
  • 30kW PV Grid-Tied Inverter Dual MPPT-US Solar Inverter System 4
30kW PV Grid-Tied Inverter Dual MPPT-US Solar Inverter

30kW PV Grid-Tied Inverter Dual MPPT-US Solar Inverter

Ref Price:
get latest price
Loading Port:
Shanghai
Payment Terms:
TT or LC
Min Order Qty:
10 mm
Supply Capability:
1000 mm/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

PV Grid-Tied Inverter Dual MPPT-US Solar Inverter

 

 

GT3.6-ZX-01/HF

Input(DC)

Max.DC Power

3600W

Max.DC Voltage

500V

PV Voltage range, MPPT

60V ~ 360V

Max.input current

30.0A

Number of MPP trackers

2

Max.number of strings (parallel)

4

Output(AC)

Nominal AC power /
Max AC power

3600W/3600W

Max.output current

16.0A  

Nominal AC Voltage / range

180V~264V

AC grid frequency / range

47.5-51.5Hz / 59.3-60.5Hz

Power factor at rated power

1

THD

< 3%

AC connection

Single-phase

Efficiency

Max. efficiency/Californian efficiency

> 98.0% / > 97.0%

MPP adaptation efficiency

> 99.0%

Protection devices

DC reverse polarity protection

AC short-circuit protection

Ground fault monitoring

Grid monitoring

Output Transient Voltage Suppression

Over load

Anti-islanding

General data

Dimensions (W/ H / D) in mm

370 / 540 / 185 mm

Weight

23kg

Operating temperature range

-25 ~ +60℃

Storage temperature range

-40 ~ +70℃

Ambient humidity

0 ~ 100%

Consumption (night)

< 0.5W

Topology

HF-transformer galvanic isolation

Cooling concept

Convection

Enclosure type

IP65 / NEMA 3R

Features

DC connection: PV special connector

AC connection: connector

LCD display & Backlit

LED display

Interfaces: RS485

Warranty: 10 years

Certificates & approvals

G83 / G59 / TUV / SAA / ETL / JET/ CE

 

 

 

 

Q: Can a solar inverter be used with different types of backup power sources?
Yes, a solar inverter can be used with different types of backup power sources such as batteries, generators, or the utility grid. The inverter's role is to convert the DC power generated by solar panels into AC power that can be used by household appliances or fed back into the grid. It can seamlessly switch between different power sources, ensuring uninterrupted power supply and maximizing the utilization of renewable energy.
Q: What are the different types of solar inverters?
There are several types of solar inverters, including string inverters, microinverters, and power optimizers.
Q: What is the typical lifespan of the capacitors in a solar inverter?
The typical lifespan of capacitors in a solar inverter can vary depending on various factors such as the quality of the capacitors, operating conditions, and maintenance practices. However, on average, capacitors in a solar inverter are expected to have a lifespan of around 10 to 15 years.
Q: Can a solar inverter be used with different types of monitoring systems?
Yes, a solar inverter can typically be used with different types of monitoring systems. Most modern solar inverters come with built-in communication interfaces that allow for seamless integration with various monitoring systems. These systems can range from basic monitoring apps provided by the inverter manufacturer to more advanced third-party monitoring platforms. As long as the monitoring system supports the communication protocol of the solar inverter, it can be used to monitor and manage the performance of the solar power system.
Q: How does MPPT improve the performance of a solar inverter?
MPPT (Maximum Power Point Tracking) improves the performance of a solar inverter by optimizing the power generated from the solar panels. It continuously adjusts the operating voltage and current to ensure that the solar panels are operating at their maximum power point, which is the point where they generate the most power. This allows the solar inverter to convert the maximum amount of solar energy into usable electricity, resulting in increased efficiency and improved overall performance.
Q: How does a solar inverter handle variations in solar panel cleanliness?
A solar inverter does not directly handle variations in solar panel cleanliness. However, a decrease in solar panel cleanliness can lead to a decrease in the overall energy output of the solar system. This reduced energy input is then processed by the solar inverter, which converts it into usable electricity. Therefore, while a solar inverter itself does not handle the cleanliness of solar panels, it indirectly adapts to variations by adjusting the energy conversion process based on the input it receives from the panels.
Q: What is the role of a communication interface in a solar inverter?
The role of a communication interface in a solar inverter is to facilitate the exchange of information and data between the inverter and other devices or systems. It allows for monitoring, control, and communication with the solar inverter, enabling real-time performance monitoring, remote management, and integration with other renewable energy systems or smart grid networks.
Q: Can a solar inverter be used in parallel configurations for increased power output?
Yes, a solar inverter can be used in parallel configurations for increased power output. By connecting multiple inverters in parallel, the overall power output can be increased, allowing for the utilization of larger solar arrays and maximizing the energy generation capacity.
Q: How does MPPT improve the efficiency of a solar inverter?
MPPT, or Maximum Power Point Tracking, improves the efficiency of a solar inverter by constantly adjusting the operating point of the solar panel to extract maximum power from the sunlight. It ensures that the solar panel operates at its maximum power point, regardless of changing weather conditions or variations in the solar irradiance. This optimization leads to higher energy conversion efficiency, maximizing the power output of the solar panel and ultimately increasing the overall efficiency of the solar inverter.
Q: Are all solar inverters compatible with all solar panels?
No, not all solar inverters are compatible with all solar panels. The compatibility between inverters and panels depends on various factors such as voltage, power rating, and technology used. It is important to ensure that the inverter you choose is specifically designed to work with the type and specifications of the solar panels you have.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords