• 300W Off-Grid Solar Inverter - Solar Inverter Italy System 1
300W Off-Grid Solar Inverter - Solar Inverter Italy

300W Off-Grid Solar Inverter - Solar Inverter Italy

Ref Price:
get latest price
Loading Port:
China Main Port
Payment Terms:
TT OR LC
Min Order Qty:
-
Supply Capability:
-

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Features

Pure sine wave output (THD<3%)

Power ON-OFF switch

Input voltage range:-20% ~ +30%

Output voltage regulation:±10%

Thermo control cooling fan

Two-color indicators display power and fault status

Protections:short circuit, overload, over temperature,

Low battery voltage, over battery voltage, lack-voltage alarm.

Topology: Pull-push

Approvals: CE mark / EMC / LVD/ RoHS

1 year warranty (Remarks: Customizable input voltage such as 36v, 72v, 96v,110v;output voltage such as 120v, 130v, 200v,240v, etc; )



Order model No

P300w-12A

P3000w-24A

P300w-48A

P300w-12B

P3000w-24B

P300W-48B

Output

AC voltage

110V±10%

220V±10%

Rated power

300W

300W

Peak power

600W

600W

Waveform (THD)

Pure sine wave (<3%)

Pure sine wave (<3%)

Frequency

60Hz ±0.3% or 50Hz ±0.3%

Input

NO load current draw

<0.34A

<0.32A

<0.2A

<0.34A

<0.32A

<0.2A

DC voltage

12V

24V

48V

12V

24V

48V

DC Voltage range

9.5~16V

19~32V

38~63V

9.5~16V

19~32V

38~63V

Efficiency

> 86 %

> 88 %

> 90%

> 86 %

> 88 %

> 90 %

DC connector

Cables With Clips or Car Adaptor

Cables With Clips or Car Adaptor

Protection

DCLow voltage alarm

10.3~10.6V

20.6V ~21.2V

41.2V~42.4V

10.3~10.6V

20.6V ~21.2V

41.2V~42.4V

DC Low voltage shut down

9.4~9.6V

18.8~19.2V

37.6~38.4V

9.4~9.6V

18.8~19.2V

37.6~38.4V

Over load

Shut Off Output

Shut Off Output

DC Over voltage shut down

15.8~16.2V

30~32V

60~63V

15.8~16.2V

30~32V

60~63V

Over thermal

Shut Off Output Automatically

Shut Off Output Automatically

Fuses

Short Circuit

Short Circuit

Environment

Working temperature

-10°c ~ +50°c

-10°c ~ +50°c

Working humidity

10%~90%RH

10%~90%RH

Storage temperature

-20°c ~ +50°c

-20°c ~ +50°c

Work altitude

≤1000m

Package

Machine Size(mm)

220*118*63

220*118*63

Packing Size(mm)

250*120*66

250*120*66

Net Weight

1.3kg/unit

1.3kg/unit

Gross Weight

1.4kg/unit

1.4kg/unit

Packing Mode

Carton

Carton

Other

Star

Soft Star

Soft Start

Cooling Ways

Cooling Fan

Cooling Fan


Q: What is the role of a solar inverter in a utility-scale system?
The role of a solar inverter in a utility-scale system is to convert the direct current (DC) electricity produced by the solar panels into alternating current (AC) electricity that can be fed into the utility grid. It also ensures the maximum power output of the solar panels by tracking the maximum power point. Additionally, the inverter provides grid synchronization and protection functions to ensure the safe and efficient operation of the utility-scale solar system.
Q: How does a solar inverter impact the payback period of a solar system?
A solar inverter can have a significant impact on the payback period of a solar system. The efficiency and reliability of a solar inverter can affect the overall energy production and performance of the solar system. A high-quality inverter can optimize the conversion of solar energy into usable electricity, maximizing the system's output and reducing energy losses. This improved efficiency can shorten the payback period by increasing the amount of electricity generated and therefore the savings on utility bills. Additionally, a reliable inverter can minimize maintenance and replacement costs, further enhancing the financial returns of the solar investment.
Q: How does a solar inverter handle voltage regulation during fault conditions?
During fault conditions, a solar inverter typically handles voltage regulation through various protective and control mechanisms. It may employ techniques such as voltage regulation algorithms, fast response times, and fault detection systems. These measures help the inverter to rapidly detect and respond to fault conditions by adjusting its output voltage to maintain stability within safe limits. Additionally, some inverters may also incorporate features like overvoltage protection, under-voltage protection, and anti-islanding functionality to further ensure safe and reliable operation during fault conditions.
Q: What is the maximum number of AC outputs in a solar inverter?
The maximum number of AC outputs in a solar inverter varies depending on the model and design of the inverter. Some solar inverters may have a single AC output, while others can have multiple AC outputs, ranging from two to four or even more.
Q: Can a solar inverter be used for residential applications?
Yes, a solar inverter can be used for residential applications. In fact, it is commonly used in residential solar power systems to convert the direct current (DC) generated by solar panels into alternating current (AC) that can be used to power household appliances and electronics.
Q: Can a solar inverter be used in a solar-powered telecommunications system?
Yes, a solar inverter can be used in a solar-powered telecommunications system. The solar inverter is responsible for converting the direct current (DC) produced by solar panels into alternating current (AC) that can be used to power various devices in the system, including telecommunications equipment.
Q: How does a solar inverter handle sudden changes in solar irradiation?
A solar inverter handles sudden changes in solar irradiation by constantly monitoring the incoming solar energy and adjusting its output power accordingly. When there is a sudden increase in solar irradiation, the inverter increases its power output to match the higher energy generation. Similarly, when there is a sudden decrease in solar irradiation, the inverter reduces its power output to align with the lower energy production. This dynamic response ensures the inverter efficiently converts the available solar energy into usable electricity, regardless of variations in solar irradiation.
Q: Can a solar inverter be used with a net metering system?
Yes, a solar inverter can be used with a net metering system. In fact, a solar inverter is an essential component of a net metering system. It converts the direct current (DC) electricity generated by the solar panels into alternating current (AC) electricity that can be used to power the home or business. The excess electricity produced by the solar panels is fed back into the grid through the net meter, allowing the utility company to credit the owner for the excess energy produced.
Q: Can a solar inverter be used with a solar-powered electric vehicle charging station?
Yes, a solar inverter can be used with a solar-powered electric vehicle charging station. The solar inverter converts the DC (direct current) electricity generated by the solar panels into AC (alternating current) electricity, which is required to charge an electric vehicle. By using a solar inverter, the solar-powered electric vehicle charging station can efficiently convert and deliver the electricity generated from solar panels to charge electric vehicles.
Q: Can a solar inverter be used in a solar-powered data center?
Yes, a solar inverter can be used in a solar-powered data center. A solar inverter is an essential component of a solar power system that converts the direct current (DC) produced by solar panels into alternating current (AC) electricity, which is suitable for use in powering electronic equipment such as servers and data centers. By using a solar inverter, a solar-powered data center can efficiently utilize the electricity generated by solar panels, reducing its reliance on traditional grid power sources and promoting sustainability.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords