• Hexagonal A Grade Monocrystalline Solar Cells 17.4x17.6 System 1
  • Hexagonal A Grade Monocrystalline Solar Cells 17.4x17.6 System 2
  • Hexagonal A Grade Monocrystalline Solar Cells 17.4x17.6 System 3
  • Hexagonal A Grade Monocrystalline Solar Cells 17.4x17.6 System 4
Hexagonal A Grade Monocrystalline Solar Cells 17.4x17.6

Hexagonal A Grade Monocrystalline Solar Cells 17.4x17.6

Ref Price:
get latest price
Loading Port:
Shanghai
Payment Terms:
TT or LC
Min Order Qty:
5000 pc
Supply Capability:
80000 pc/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Monocrystalline Solar Cells A GRADE

Solar cells is made by solar wafer, it has three categories of solar cell right now, monocrystalline polycrystalline and thin film,These cells are entirely based around the concept of ap-n junction, which is the critical part of solar module, it is the part that can convert the light energy into electricity, the thickness is from 180um to 200um, with even busbars to conduct electricity, textured cell can decrease diffuse reflection; they are often electrically connected and encapsulated as a module. Photovoltaic modules often have a sheet of glass on the front (sun up) side, allowing light to pass while protecting  semiconductor wafers from abrasion and impact due to wind-driven debris, rain, hail, etc. Solar cells are also usually connected in series in modules, creating an additive voltage. Connecting cells in parallel will yield a higher current;With high quality and stable quality. Our Cells can greatly improve the performance of Solar Modules.

Advantage of  Monocrystalline Solar Cells

•  High efficiency and stable performance in photovoltaic conversion.
•  Advanced diffusion technique ensuring the homogeneity of energy conversion efficiency of the cell.
•  Advanced PECVD film forming, providing a dark blue silicon nitride anti-reflection film of homogenous color and attractive appearance.
•  High quality metal paste for back surface and electrode, ensuring good conductivity, high pulling strength and ease of soldering.
•  High precision patterning using screen printing, ensuring accurate busbar location for ease with automatic soldering a laser cutting. 

Specifications of Monocrystalline Solar Cells

Format : 156 mm × 156 mm ± 0.5 mm                                          

Thickness: 210 μm ±40 μm

Front (-) : 1.5mm bus bars (silver),blue anti-reflection coating (silicon nitride)

Back (+)  : 2.5mm wide soldering pads (silver) back surface field (aluminium)    

Efficiency (%)    Pmpp (W)    Umpp (V)       Impp (A)       Uoc (V)     Isc (A) 

18.20%              4.43             0.536             8.263           0.634        8.712 

18.00%              4.38             0.535         -  8.188           0.633         8.701 

17.80%            4.33             0.534        -  -8.112       ---0.632   ----8.652 

17.60%              4.28             0.533             8.036           0.631        8.641 

17.40%              4.23             0.529             8.005           0.630        8.591 



Monocrystalline Solar Cells A Grade 17.417.6

FAQ

We have organized several common questions for our clientsmay help you sincerely

What price for each watt?

It depends on the efficiency of the solar cell, quantity, delivery date and payment terms.

How long can we receive the product after purchase?

In the purchase of product within three working days, We will arrange the factory delivery as soon as possible. The pecific time of receiving is related to the state and position of customers.Commonly 7 to 10 working days can be served.

Can you provide the peripheral products of the solar panels, such as the battery, controller, and inverter? If so, can you tell me how do they match each other?

Yes, we can, we have two companies for solar region, one is CNBM International, the other is CNBM engineering Co.

We can provide you not only the solar module but also the off grid solar system, we can also provide you service with on grid plant.

What is your warranty of solar cell?

 Our product can promise lower than 0.3% open box crack, we support claim after opening the box if it has crackm color difference or sth, the buyer should give pictures immediately, we can not accept the claim after the solar cell has assembled to solar panel.

• Timeliness of delivery

• How do you pack your products?

We have rich experience on how to pack the solar cell to make sure the safety on shipment, we could use wooden box or pallet as buyer's preference.

New Way of Making Solar Cells Promises Cheaper Power

A new way of making solar cells promises a cheaper way to generate electricity from the sun and new ways to integrate solar power into other products. When the light comes in and is both directly absorbed by the wires, and some of the light bounces around in between the wires. In fact, the absorption enhancement that we see is in the range of 20 to 50 times the single-pass absorbance. The principles with the wire arrays is grow them on a supporting substrate, and peel them off inside a plastic sheet, so that the material has exactly the optical and electrical properties of a silicon wafer, but instead it basically has the mechanical properties of a flexible plastic sheet. Except that, the flexibility opens the door to potential new applications. For example, the solar cell could be built into roofing material, saving money on installation. Other ideas for new uses come from the physical form of Atwater's novel design.

The more wonderful thing about solar energy is that it's accessible and available everywhere in the world, from the cloudiest place in northern Europe to the sunniest place in north-central Africa to the Outback of Australia to South Asia. And in fact the use of solar energy is growing worldwide for that reason."

Making Solar Cells Greener

To make the solar cells greener and more efficient, The scientists used the bacteria Mycobacterium smegmatis. In fact,A mycobacterium is a type of pathogen that can cause diseases such as tuberculosis, but the species scientists utilized in the study is harmless and can be found in soil and cornflakes. It also produces the protein MspA, which can be used for numerous applications once it has been chemically purified. 
After purifying the protein, Scientist combines it with a synthesized dye that is less toxic than traditional dyes. The protein-dye mixture is coated onto individual solar cells and tested with artificial sunlight to measure energy output. 
The core idea is that the protein acts as a matrix for electron transfer for this dye that absorbs sunlight. We want the protein to be able to capture the electron that the dye gives out and then transfer that electron in one direction, thereby generating an electrical current. 
The new dye-sensitized solar cells do not currently improve on the technology’s ability to convert sunlight into electrical current, but they are the first of their kind and could help low-cost solar cells become a more viable option for alternative energy applications. 
This type of research where you have a biodegradable or environmentally friendly component inside a solar cell has not been done before, and the research is still in its early stages right now. But we have noticed that it’s working, and that means that the protein is not decomposed in the light and electric generating conditions. Because of that, we believe that we’ve actually made the first protein-incorporated solar cell.

 


Q: Can solar cells be damaged by hail or other weather events?
Yes, solar cells can be damaged by hail or other severe weather events. Hailstones can potentially crack or shatter the surface of the solar panels, affecting their efficiency and functionality. Similarly, extreme weather events like hurricanes or heavy storms can cause physical damage by dislodging or breaking the panels, leading to a decrease in their performance. It is important to ensure proper installation and maintenance to minimize the risk of weather-related damage to solar cells.
Q: Are there any books in the market t about solar cells and their applications?
You can try to search online about the application of solar cells.
Q: What is the impact of tree shading on solar cell performance?
Tree shading has a significant negative impact on solar cell performance as it reduces the amount of sunlight reaching the cells, thereby reducing the overall energy output. Shading blocks direct sunlight and creates uneven distribution of light, resulting in decreased efficiency and potentially even causing parts of the cells to operate in reverse, leading to further energy loss. It is crucial to plan solar installations carefully, considering tree growth and shading patterns, to maximize solar cell performance.
Q: Are solar cells affected by extreme temperatures?
Yes, solar cells are affected by extreme temperatures. High temperatures can cause the efficiency of solar cells to decrease, as the excess heat can reduce their ability to convert sunlight into electricity. Conversely, extremely cold temperatures can also impact the performance of solar cells, although to a lesser extent. It is important to note that modern solar cell designs often incorporate measures to mitigate the effects of temperature, such as using materials that can withstand extreme conditions.
Q: Doping and Diffusion Principle in Solar Cell Processing
Doping in semiconductors refers to the incorporation of phosphorus or gallium in semiconductor silicon to obtain n-type or p-type semiconductor materials, thereby fabricating a wide variety of semiconductor devices.
Q: What is the maximum voltage output of a solar cell?
The maximum voltage output of a solar cell depends on various factors such as the type of solar cell, sunlight intensity, temperature, and cell design. Typically, most solar cells have a maximum voltage output ranging from 0.5 to 1 volt.
Q: What is the cost of solar cells?
The cost of solar cells can vary depending on factors such as the type of technology, efficiency, and quality. Generally, the cost ranges from $0.30 to $0.80 per watt.
Q: What are the different types of solar cells?
There are several different types of solar cells, including monocrystalline, polycrystalline, thin-film, and multi-junction cells.
Q: Can solar cells be used for powering offshore oil rigs?
Yes, solar cells can be used for powering offshore oil rigs. They can provide a renewable and clean energy source to supplement or replace traditional fossil fuel-based generators, reducing the environmental impact and operational costs of offshore oil operations.
Q: How do solar cells perform in polluted environments?
Solar cells can still generate electricity in polluted environments, but their performance can be negatively affected. Air pollution, such as smog or particulate matter, can block or scatter sunlight, reducing the amount of light that reaches the solar cells and therefore decreasing their efficiency. Additionally, the accumulation of dirt, dust, or pollutants on the surface of the solar panels can further reduce their performance by obstructing sunlight absorption. Therefore, regular cleaning and maintenance of solar panels are essential to optimize their performance in polluted environments.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords