• Ductile Iron Pipe of China DN150-DN1000 EN545/EN598/ISO2531 High Quality System 1
  • Ductile Iron Pipe of China DN150-DN1000 EN545/EN598/ISO2531 High Quality System 2
Ductile Iron Pipe of China DN150-DN1000 EN545/EN598/ISO2531 High Quality

Ductile Iron Pipe of China DN150-DN1000 EN545/EN598/ISO2531 High Quality

Ref Price:
$480.00 - 506.00 / m.t. get latest price
Loading Port:
China main port
Payment Terms:
TT or LC
Min Order Qty:
25 m.t.
Supply Capability:
300000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

1,Ductile Iron Pipe Description :

1) Pipes confirm to ISO2531,K9 class,T type joint,6m long,with inside cements lining conform to ISO4179,  outside Zinc spraying(130g/m2) and bitumen coating(70μm) conform to ISO8179.

2) Pipe ends: Spigot and socket ends, with 100% SBR rubber gaskets accoding to ISO4633

3) we can do third party inspection according to customer's request.

2,Main Features of the Ductile Iron Pipe:

·High yield strength

·High tensile Strength

·High corrosion resistance

·Pressure Resistence

·Anti-corrosion

3,Ductile Iron Pipe Images:

Ductile Iron Pipe of China DN5600 High Quality

Ductile Iron Pipe of China DN5600 High Quality

4. Ductile Iron Pipe  Specification

Surface Finishes:Bare, Oiled, Mill Varnish, Galv,FBE, FBE Dual, 3LPE, 3LPP, Coal Tar,Concrete Coating and Tape Wrap
End Finishes: Beveled, Square Cut, Threaded, hat
Additional Services: Internal Coating
Packaging: packed in bag, plastic bag, steel strip, steel wire,double wire, iron box, wooden box,

Test :X-ray, UT, magnetic particle,inspection,hydrostatic test.
Processing service :Beveling, Threading, Slotting, Cut-to length, Bends, Quench and Temper, Fabrication, Double-jointing and On-site assistance
Documentary MTC: material certification,Origin certification, CI or PI,Test Report, export licence, handling order, B/L,insurance policy,shipping instructions, contract, packing list etc.

5.FAQ:

We have organized several common questions for our clients,may help you sincerely:

1.Q: Why would you choose ductile iron pipe rather than other pipe materials?

 A:The reasons are obvious for that not only ductile iron pipe possesses the inherent strength and flexibility of ductile iron, combined with proven corrosion protection systems, but also the cost savings can be achieved from design to installation and commissioning.

 2.Q:Why can you guarantee the inner of pipes can’t be corroded?

 A: High alumina cement mortar lining and sulphate-resistant cement mortar lining. These two special linings are applicable to inner anti-corrosion for sewage pipes, improving resistance to erosion of the sewage components.

Q:Can ductile iron pipes be used in areas with high temperature variations?
Yes, ductile iron pipes can be used in areas with high temperature variations. Ductile iron has a high resistance to thermal expansion and contraction, making it suitable for withstanding temperature fluctuations without compromising its structural integrity or performance.
Q:How are ductile iron pipes protected against stray electrical currents?
Ductile iron pipes, which are commonly used for water and sewer systems, are protected against stray electrical currents through a process known as cathodic protection. This method involves applying a low-voltage direct current (DC) to the pipes, which creates a protective electrical field around them. Cathodic protection is achieved by installing sacrificial anodes or impressed current systems near the ductile iron pipes. Sacrificial anodes, typically made of a more electrically active metal such as zinc or magnesium, are connected to the pipes and serve as the source of electrical current. These anodes corrode over time, sacrificing themselves to protect the pipes from corrosion due to stray electrical currents. Impressed current systems, on the other hand, utilize an external power source to supply the protective electrical current. Rectifiers are used to convert alternating current (AC) to direct current (DC) and the DC is then applied to the pipes through anodes. This method allows for more control over the amount of current being applied, ensuring optimal protection. In both cases, the electrical current flowing through the sacrificial anodes or impressed current systems creates a protective barrier around the ductile iron pipes. This barrier prevents the stray electrical currents from flowing through the pipes, reducing the risk of corrosion and extending the lifespan of the infrastructure. Regular monitoring and maintenance of the cathodic protection system are essential to ensure its effectiveness. This involves inspecting the anodes, checking the electrical current levels, and making any necessary adjustments or replacements to maintain the desired level of protection. Overall, cathodic protection is a reliable and widely used method to protect ductile iron pipes against stray electrical currents, safeguarding the integrity and longevity of water and sewer systems.
Q:What is the typical weight of ductile iron pipe?
The weight of ductile iron pipe can differ based on its diameter and wall thickness. In general, a 6-inch diameter ductile iron pipe with a wall thickness of 0.25 inches may weigh about 35 pounds per linear foot. Likewise, a 12-inch diameter ductile iron pipe with a wall thickness of 0.375 inches could weigh roughly 115 pounds per linear foot. It should be emphasized that these weight approximations are rough and may slightly differ depending on the manufacturer and product specifications.
Q:What is the expected sound attenuation of ductile iron pipes?
Several factors can affect the expected sound attenuation of ductile iron pipes. Generally, these pipes have good sound attenuation properties due to their dense construction and thick walls. The density of the material helps absorb and dampen sound waves, reducing noise transmission. Additionally, the thickness of the pipe walls adds an extra barrier for sound to pass through, contributing to sound attenuation. However, it's important to consider other factors that can influence the specific sound attenuation of ductile iron pipes. These factors include pipe diameter, wall thickness, installation method, and the surrounding environment. For example, larger diameter pipes may have slightly lower sound attenuation compared to smaller diameter pipes due to their increased surface area. Additionally, variations in wall thickness can affect the sound insulation properties. During installation, the presence of joints or fittings in the pipeline can create points where sound can transmit, reducing sound attenuation. Therefore, it is recommended to use proper installation techniques that minimize the use of joints and fittings to enhance sound attenuation. The surrounding environment also plays a role in sound attenuation. For instance, if the pipes are buried in soil, the composition and density of the soil can affect sound transmission properties. Moreover, the presence of other structures or materials nearby may influence the overall sound attenuation performance. To determine the specific expected sound attenuation of ductile iron pipes for a particular application, it is advisable to consult manufacturer specifications or seek assistance from acoustic engineering professionals. They can consider all relevant factors and conduct specific tests or simulations to provide accurate predictions.
Q:How long is the service life of the cast iron pipe, and the time of use of ductile iron pipes?
Ductile iron is a new type of pipe, as long as we use it properly, the quality of its products, then the use of ductile iron pipes for 20-35 years, basically no problem. But whether it is ductile cast iron pipe, or some other things, the use of more years, and more or less, there will be some problems, ductile iron pipe can not escape the robbery. However, as long as we use the ductile iron pipe in the process of careful care, the service life of the problem is not to worry about.
Q:How do ductile iron pipes perform in high-temperature steam applications?
Ductile iron pipes excel in high-temperature steam applications thanks to their remarkable performance. They can withstand elevated temperatures and maintain their structural integrity, making them highly suitable for steam distribution systems. One notable advantage of ductile iron pipes in high-temperature steam applications lies in their exceptional thermal conductivity. This property enables efficient heat transfer, ensuring that the steam is delivered at the desired temperature with minimal loss. Additionally, the high thermal conductivity of ductile iron helps to mitigate the risk of thermal expansion and contraction, which can lead to pipe failure or leakage. Moreover, ductile iron pipes boast a high melting point, typically around 2000°F (1093°C). This resistance to extreme temperatures encountered in steam applications ensures that the pipes remain intact and do not deform, guaranteeing the reliability and longevity of the piping system. Another crucial factor contributing to the performance of ductile iron pipes in high-temperature steam applications is their corrosion resistance. These pipes are usually coated with epoxy or other protective materials to prevent corrosion and maintain their structural integrity, even in aggressive steam environments. This corrosion resistance ensures that the pipes can endure harsh conditions and operate efficiently over an extended period. In conclusion, ductile iron pipes are an ideal choice for high-temperature steam applications due to their excellent thermal conductivity, high melting point, and corrosion resistance. These properties make them a reliable and long-lasting option for steam distribution systems, ensuring the safe and efficient transportation of steam at elevated temperatures.
Q:How long do ductile iron pipes last?
Ductile iron pipes are known for their durability and long lifespan. On average, these pipes can last anywhere between 80 to 100 years, with some even lasting up to 150 years. The longevity of ductile iron pipes is attributed to their robust construction, which enables them to withstand high-pressure environments, resist corrosion, and endure extreme weather conditions. Additionally, ductile iron pipes have a proven track record of reliability and performance, making them a popular choice for water and wastewater infrastructure projects worldwide. Regular inspection and maintenance can further extend the lifespan of ductile iron pipes, ensuring their continued service for many decades.
Q:What are the different methods for joining ductile iron pipe?
There are several methods for joining ductile iron pipe, including mechanical joints, flanged joints, push-on joints, and restrained joints. Mechanical joints use a rubber gasket and a series of bolts and glands to create a secure connection. Flanged joints involve bolting two flanges together with a gasket in between. Push-on joints utilize a rubber gasket and require the pipe to be pushed into the joint. Restrained joints use a combination of mechanical joints and a restraining gland to prevent movement and provide a secure connection.
Q:What is the expected leakage rate for ductile iron pipes?
The expected leakage rate for ductile iron pipes can vary depending on factors such as pipe age, condition, and maintenance practices. However, generally, ductile iron pipes are designed to have a low leakage rate of less than 1% of the total flow.
Q:Can ductile iron pipes be used for irrigation of sports fields?
Indeed, ductile iron pipes are suitable for the irrigation of sports fields. Renowned for their robustness, longevity, and flexibility, these pipes are an excellent choice for a range of applications, including irrigation. With their ability to withstand external pressures and impacts, ductile iron pipes are particularly advantageous for sports fields that encounter heavy foot traffic and potential damage. Moreover, these pipes exhibit exceptional resistance to corrosion, guaranteeing enduring performance and minimal upkeep. The pipes' smooth interior surface also facilitates efficient water flow, preventing obstructions and ensuring adequate irrigation for the sports fields. All in all, ductile iron pipes represent a dependable and appropriate option for irrigation systems in sports fields.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords