• Nexus Solar Energy Systems UPS Types Office Equipment Low Frequency 20~200kVA Front Office Equipment System 1
  • Nexus Solar Energy Systems UPS Types Office Equipment Low Frequency 20~200kVA Front Office Equipment System 2
Nexus Solar Energy Systems UPS Types Office Equipment Low Frequency 20~200kVA Front Office Equipment

Nexus Solar Energy Systems UPS Types Office Equipment Low Frequency 20~200kVA Front Office Equipment

Ref Price:
get latest price
Loading Port:
China main port
Payment Terms:
TT OR LC
Min Order Qty:
20 carton
Supply Capability:
10000 carton/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Online Low Frequency 20~200KVA UPS Types Front Office Equipment 

 

MODELGP33-20-30GP33-40-60GP33-80-100GP33-120-200
Capacity20~30KVA40~60KVA80~100KVA120~200KVA
TypeTower
INPUT
Voltage

(208 or 380 or 400 or 480 Vac) ± 20% 

/ 5 wires (3 Lines + Neutral + Ground)

Frequency50 or 60Hz ± 10% Autosensing
Power factor0.98
FilterEMI, RFI
Dual inputOptional 
OUTPUT
Voltage

(208 or 380 or 400 or 480 Vac) ± 20% / 

5 wires (3 Lines + Neutral + Ground)

Frequency50 or 60Hz ± 0.1% 
EffciencyAC / AC > 92%
Trandfer time0 ms
Wave formSine wave
Power factor0.9
Voltage T.H.D.< 2% with linear load< td="">
Crest factor3 : 1
TechnologyTrue on-line double conversion controlled by microcontroller
Overload recoveryAutomatically transfer to UPS mode
Isolation transformerInverter mode ( bypass mode is optional )
Parallel connectionParallel connection function is ready (extra PCB is not required )
BATTERY
Battery typeVRLA ( Valve Regulated Lead Acid ), not included
DC voltage384 Vac480 Vdc
Charging time4 hours up to 90%
Battery detectionself-detect, transfer to battery mode adjustable
PROTECTION

Lighting and 

transient protection

Hotswappable lightning and transient surge suppressor

 (In:10 Kamp, Up:1.5 Kv, I max : 20 K amp. )

Hardware protection

output breaker, battery breaker, bypass breaker; DC fuse, fan, 

redundant power supply; 

temperature sensor, EPO (Emergency Power Off), 

audible alarms etc.

Software protection

Discharging batteries, battery charge working mode, inverter working mode,

 emergency power off, manual shutdown, bypass SCR failure, 

bypass sequence failure, bypass over the lilit, critical overload, 

batteries exhaustion, low or high output voltage, DC fuse open, 

5v power supply failure, 13.5V power supply failure, inverter overvoltage, 

200% overload on each line, transfer failure, inverter voltage out of range, 

over voltage between neutral and ground, UPS on bypass mode, 

bypass frequency out opf range.

BypassSolid state
Overload125% for 10 min, 150% for 30 sec, 1000% for 16 millisencond.
EPOEPO local and / or remote
DisplayLCD, touch screen
LED's diagramIncluded
Communication

RS232 intellident Slot, modem, SNMP(RJ45)

(SNMP adaptive Software is supplied by the producer)

ENVIRONMENT
Elevation1.700 m.o.s. 1 without derrating

Temperature 

& noise

0℃~40℃ / < 60db @ 1.5m.< td="">
HumidityNon condensate
PHYSICAL
Dimension(mm)520*1600*550520*1670*7801000*1860*870

Ask for

 information

Weight

(without batteries)

150300600

 

 

 

Product Description

1. Wide range of input voltage

The UPS can offer normal and stable service voltage under its input voltage range. When the input voltage is out of its range the machine will switch to battery mode automatically to keep the output power in order to protect the equipment, such as computers, ensure they will not be damaged by the over high or over low voltage, users can continue the operation of equipment for a while or save the data on computers while the power network is abnormal.

 

2. Wide range of AVR(Automatic voltage regulation)

In the product’s input voltage range and under 3 steps of intelligent AVR function, it can provide a stable output voltage.

 

3. Automatic self detection when UPS on(LED).

Before the UPS on, red, yellow, blue LED will light up two times by cycle turns, after self detection UPS switch to AC mode/battery mode or working mode. 

 

4. Silence function

In the "battery mode", shortly press the switch to turn off the buzzer. But the battery is about to run out or the load is too heavy, the buzzer sound cannot be muted.

 

5. Overload protection

In the battery mode, output voltage turn down correspondingly when it is overload, after the capacity of load is lower than the rated power then output voltage will back to rated value, it ensures the UPS will not shut down by abrupt overload which caused by surging current during the computer is working and other equipment is added.

 

6. Short circuit protection

When the mis-operation caused the load short circuit or computer failure (such as power tube breakdown of switch) cause short circuit, the UPS will shutdown automatically for protection.

 

7. The low current switch

This UPS adopts low current switch to extend the service life which is longer than conventional battery and high current switch in AC current path.

 

8. Automatic charging

There are two charging mode, charging time is faster than ordinary charging mode, higher efficiency, and greatly prolonging the service life of the battery.

 

9. With a bypass output

Independent bypass output socket for external printers or scanners of computer peripherals, with surge protection of the load.

 

Q: Can solar energy systems be used during a power outage?
Yes, solar energy systems can be used during a power outage. However, this is only possible if the solar energy system is equipped with battery storage. Without battery storage, the solar panels will not be able to generate electricity during a power outage as they rely on grid connection to function.
Q: How do solar energy systems impact national energy policy?
Solar energy systems have a significant impact on national energy policy as they promote the transition to renewable energy sources, reduce greenhouse gas emissions, and enhance energy independence. By incentivizing the adoption of solar power through policies such as tax credits and feed-in tariffs, governments can diversify their energy mix, decrease reliance on fossil fuels, and achieve sustainability goals. Additionally, the growth of the solar industry creates job opportunities, stimulates economic growth, and fosters innovation in clean energy technologies. Overall, solar energy systems play a crucial role in shaping national energy policies towards a more sustainable and resilient future.
Q: How much space do solar panels take up on a roof?
The amount of space solar panels take up on a roof depends on various factors, such as the size and number of panels, as well as the layout and orientation of the roof. On average, a typical residential solar panel system requires about 100-400 square feet of roof space. However, it's best to consult with a solar professional to assess your specific roof and determine the optimal size and configuration for your solar panel installation.
Q: How does shading affect the performance of solar energy systems?
Shading has a significant impact on the performance of solar energy systems as it reduces the amount of sunlight reaching the solar panels, thereby reducing their efficiency in generating electricity. Even partial shading on a small portion of the panel can cause a significant drop in the system's output. Therefore, it is crucial to minimize shading, especially during peak sunlight hours, to maximize the performance and overall energy production of solar systems.
Q: Are there any risks of electrical short circuits with solar energy systems?
Yes, there are risks of electrical short circuits with solar energy systems. Just like any other electrical system, solar energy systems can be susceptible to short circuits. A short circuit occurs when there is an unintended path of low resistance that allows a large amount of current to flow. This can happen due to various reasons such as faulty wiring, damaged components, or improper installation. Short circuits can result in overheating, electrical fires, or damage to the system. The high current flow generated by a short circuit can cause wires to melt, insulation to burn, and can even damage the solar panels themselves. In extreme cases, short circuits can lead to explosions or other serious safety hazards. To mitigate the risks of short circuits, it is crucial to ensure proper installation by qualified professionals who follow safety guidelines and adhere to local electrical codes. Regular maintenance and inspection of the system are also important to identify and address any potential issues. It is recommended to have a circuit breaker or fuse installed within the system to automatically disconnect the circuit in case of a short circuit. Additionally, the use of high-quality components and wiring that are specifically designed for solar energy systems can help minimize the risks of short circuits. It is also important to follow manufacturer's instructions and guidelines for system maintenance and operation. Overall, while the risks of electrical short circuits with solar energy systems exist, they can be effectively managed and minimized through proper installation, regular maintenance, and adherence to safety guidelines.
Q: What is net metering?
Net metering is a billing arrangement that allows solar panel owners to receive credit for the excess electricity they generate and feed back into the grid. This means that when their solar panels produce more electricity than they need, the surplus is sent to the grid, effectively spinning their energy meter backwards and reducing their future electricity bills.
Q: What is the impact of snow or hail on solar panels?
The performance and efficiency of solar panels can be significantly affected by snow or hail. When snow accumulates on the panels, it obstructs sunlight, causing a decrease in energy production. This reduced sunlight exposure leads to a decline in the overall power output of the solar installation. Likewise, hail can cause physical harm to the panels if the ice pellets are large or impact with high velocity. This harm can result in cracks, shattered glass, or internal structural issues. Once the panels are damaged, their ability to convert sunlight into electricity is compromised, leading to decreased efficiency. To minimize the impact of snow or hail, various measures can be taken. In snowy areas, panels can be installed at an angle to facilitate the sliding off of snow, reducing accumulation. Additionally, heating elements can be incorporated into the panels to melt snow and ice. However, these heating systems require additional energy, which may offset some of the benefits of solar power during snowy periods. Regarding hail, the use of tempered or impact-resistant glass for solar panels can help minimize damage. Furthermore, mounting systems that provide flexibility and shock absorption can absorb impact and reduce the risk of physical harm to the panels. In conclusion, although snow and hail can negatively affect solar panels, proper installation, maintenance, and protective measures can mitigate these impacts and ensure efficient generation of clean and renewable energy.
Q: Can a solar energy system be installed on a warehouse or industrial facility?
Yes, a solar energy system can be installed on a warehouse or industrial facility. In fact, these types of buildings often have large roof spaces or open areas that are ideal for installing solar panels. This can help the facility reduce its dependence on traditional energy sources, lower electricity costs, and contribute to a more sustainable and environmentally friendly operation.
Q: How do solar energy systems impact the electric grid?
Solar energy systems have a significant impact on the electric grid by reducing the demand for electricity from traditional sources. As more solar power is generated and fed into the grid, it helps to stabilize the grid by diversifying the energy mix. Additionally, solar systems can reduce peak demand during daylight hours, leading to cost savings and less strain on the grid infrastructure. However, the intermittent nature of solar power can pose challenges in grid management, requiring grid operators to carefully balance supply and demand to ensure grid reliability.
Q: Can solar energy systems be used in areas with limited roof space due to chimneys or vents?
Indeed, solar energy systems can still function effectively in areas where roof space is restricted due to chimneys or vents. Although solar panels typically require unobstructed roof space to achieve optimal efficiency, there are alternative solutions accessible for areas with limited roof space. One feasible approach involves installing solar panels on adjacent flat or sloped surfaces, such as the ground or a nearby wall. These ground-mounted or wall-mounted solar systems can be adjusted to maximize exposure to sunlight, ensuring that the panels generate a substantial amount of energy. Another solution entails utilizing solar technologies specifically designed for limited roof space. For instance, solar tiles can be seamlessly integrated into the roof itself, replacing conventional roofing materials while simultaneously harnessing solar energy. These solar tiles can be installed around chimneys, vents, or any other obstructions on the roof, efficiently utilizing the available space. Furthermore, solar energy systems can be combined with other renewable energy sources, such as wind turbines or geothermal systems, to compensate for the limited roof space. By diversifying the sources of renewable energy, it becomes possible to meet the energy requirements of an area even with restricted roof space. In conclusion, despite the challenges posed by limited roof space due to chimneys or vents, there are still viable options for employing solar energy systems. By exploring alternative mounting options, utilizing solar tiles, or combining solar with other renewable energy sources, it becomes feasible to harness solar power in areas with restricted roof space.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords