• Seamless Steel Pipe for Petroleum Cracking for Frozen Food System 1
  • Seamless Steel Pipe for Petroleum Cracking for Frozen Food System 2
Seamless Steel Pipe for Petroleum Cracking for Frozen Food

Seamless Steel Pipe for Petroleum Cracking for Frozen Food

Ref Price:
get latest price
Loading Port:
China main port
Payment Terms:
TT or LC
Min Order Qty:
5 m.t.
Supply Capability:
4500 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

 

Product Description:

Seamless steel pipe with hollow section, used as a large number of pipe conveying fluid, such as oil, natural gas, coal gas, water and some solid materials such as pipelines. Compared with steel and round steel solid steel, the torsional strength of bending is same, the weight is light, is a kind of economic section steel, widely used in the manufacture of structural parts and mechanical parts, such as the oil pipe, automobile transmission shaft, the bicycle frame and steel construction with scaffold with steel pipe manufacturing annular parts, can improve the the material utilization rate, simplify the manufacturing process, material saving and working hours, has been widely used in steel pipe manufacturing

 

Standard:
GB9948 Chinese national standard


Application:
Served as for furnace tubes,heat exchange tubes and pipelines in petroleum and refinery plants
Model No.of major steel tubes:
1n 9n 1Er!rMn 1rhMn 1f:hM0 etC

 

Diamensional tolerances:

Types of steel tubes

Outer diameter

Wall thickness

Cold-rolled tubes

Tube sizes(mm)

Tolerances(mm)

Tube sizes (mm)

Tolerances(mm)

>30~50

±0.3

≤30

±10%

>50~219

±0.8%

Hot-rolled tubes

>219

±1.0%

>20

±10%

Mechanical properties:

Standard codes

Models of steel tubes

抗拉强度(MPa)

屈服强度(MPa)

伸长率(%)

冲击功(J)

布氏硬度(HB)

交货状态

GB9948

10

330~490

≥205

≥24

/

/

正火

20

410~550

≥245

≥21

≥39

/

正火

15CrMo

440~640

≥235

≥21

≥47

≤170

正火加回火

1Cr2Mo

≥390

≥175

≥22

≥92

≤179

正火加回火

1Cr5Mo

≥390

≥195

≥22

≥92

≤187

退火

Chemical composition:

Standard codes

Models of steel tubes

Chemical compositions(%)

C

Si

Mn

P

S

Cr

Mo

Ni

GB9948

10

0.07~0.14

0.17~0.37

0.35~0.65

≤0.035

≤0.035

≤0.15

/

≤0.25

20

0.17~0.24

0.17~0.37

0.35~0.65

≤0.035

≤0.035

≤0.25

/

≤0.25

15CrMo

0.12~0.18

0.17~0.37

0.40~0.70

≤0.035

≤0.035

0.80~1.10

0.40~0.55

≤0.30

1Cr2Mo

≤0.15

0.50~1.00

0.30~0.60

≤0.035

≤0.030

2.15~2.85

0.45~0.65

/

1Cr5Mo

≤0.15

≤0.50

≤0.60

≤0.035

≤0.030

4.00~6.00

0.45~0.60

≤0.60


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FAQ of Seamless Pipe :  

How is the quality of your products?
    Our products are manufactured strictly according to national and internaional standard, and we take a test on every pipe before delivered out. If you want see our quality certifications and all kinds of testing report, please just ask us for it.
Guaranteed: If products’ quality don’t accord to discription as we give or the promise before you place order, we promise 100% refund.

How about price?
    Yes, we are factory and be able to give you lowest price below market one, and we have a policy that “ for saving time and absolutely honest business attitude, we quote as lowest as possible for any customer, and discount can be given according to quantity”,if you like bargain and factory price is not low enough as you think, just don’t waste your time.Please trust the quotation we would give you, it is professional one.

Why should you chose us?
    Chose happens because of quality, then price, We can give you both.Additionally, we can also offer professional products inquiry, products knowledge train(for agents), smooth goods delivery, exellent customer solution proposals.Our service formula: good quality+good price+good service=customer’s trust
SGS test is available, customer inspection before shipping is welcome, third party inspection is no problem.

 

Any question, pls feel free to contact us !

 

‍‍Seamless Pipe  Images

 

 

 

Q:What is the compressive strength of steel pipes?
The compressive strength of steel pipes can vary due to several factors, including the grade of steel, the manufacturing process, and the dimensions of the pipes. On average, steel pipes have a compressive strength ranging from 250 MPa to 650 MPa. The higher the grade of steel used, the greater the compressive strength tends to be. Moreover, larger diameter pipes typically exhibit a higher compressive strength compared to smaller ones. It's worth noting that the compressive strength of steel pipes can also be affected by temperature, corrosion, and external loads. Therefore, it is essential to refer to specific standards, specifications, or manufacturer's data to obtain accurate and detailed information about the compressive strength of a particular steel pipe.
Q:What is the role of steel pipes in the mining and extraction of minerals?
Steel pipes play a critical role in the mining and extraction of minerals as they are used for various applications throughout the process. These durable pipes are commonly employed to transport and distribute water, chemicals, and compressed air to different areas of the mine. Additionally, steel pipes are utilized in the construction of mine shafts, tunnels, and underground structures, providing stability and support. Their ability to withstand harsh conditions, resistance to corrosion, and high strength make steel pipes an indispensable component in the mining industry.
Q:What is the electrical conductivity of steel pipes?
Due to its metallic nature, steel pipes possess a notable degree of electrical conductivity. The specific composition and properties of the steel employed can influence the electrical conductivity of these pipes. Typically, steel exhibits a conductivity range of 6.99 × 10^6 to 9.64 × 10^6 siemens per meter (S/m) at room temperature. Consequently, steel pipes are capable of effectively conducting electricity and finding application in diverse fields, including electrical transmission and grounding systems.
Q:How do steel pipes perform in high-temperature applications?
Steel pipes perform well in high-temperature applications due to their high thermal conductivity and excellent resistance to heat. They can withstand extreme temperatures without deformation or structural failure, making them suitable for transporting hot fluids or gases in industrial processes.
Q:What are the different types of connections used with steel pipes?
There are several types of connections commonly used with steel pipes, including threaded connections, welded connections, flanged connections, and grooved connections.
Q:How are steel pipes used in the construction of power plants?
Steel pipes are commonly used in the construction of power plants for various purposes such as transporting fluids, gases, and steam, as well as for structural support. They are used to create a network of pipelines that carry coolant water, fuel, and other necessary fluids to different areas of the plant. Additionally, steel pipes are used for steam generation, connecting boilers to turbines and condensers, ensuring efficient energy production. The durability, strength, and high-temperature resistance of steel pipes make them an ideal choice for the demanding conditions in power plants.
Q:What are the different coating options for steel pipes?
There are several coating options available for steel pipes, each serving a specific purpose and providing unique benefits. Some of the most common coating options for steel pipes include: 1. Fusion Bonded Epoxy (FBE) Coating: FBE coating is a popular choice for steel pipes used in various industries. It provides excellent corrosion resistance, impact resistance, and adhesion to the pipe surface. FBE coating is typically applied through a heat-induced chemical reaction, creating a durable and protective layer. 2. Polyethylene (PE) Coating: PE coating is commonly used for underground steel pipes, as it provides superior resistance against corrosion, abrasion, and chemicals. This coating is applied using extrusion methods and forms a seamless layer over the steel pipe, preventing any moisture penetration. 3. Polyurethane (PU) Coating: PU coating is known for its exceptional resistance to abrasion, chemicals, and harsh environmental conditions. It is commonly used for steel pipes exposed to extreme temperatures or in aggressive environments. PU coating can be applied in multiple layers to provide enhanced protection. 4. Coal Tar Enamel (CTE) Coating: CTE coating is a traditional option for steel pipes that require protection against corrosion. It is a thick, black coating that provides excellent resistance to water, soil, and atmospheric corrosion. CTE coating is typically applied using a hot-applied coating method. 5. Zinc Coating: Zinc coating, also known as galvanization, is a widely used protective coating for steel pipes. It involves applying a layer of zinc to the pipe surface, creating a barrier against corrosion. Zinc coating can be applied through hot-dip galvanization or electro-galvanization methods. 6. Concrete Coating: Concrete coating is often used for steel pipes in underground or submerged applications. It provides a robust protective layer against corrosion, abrasion, and mechanical damage. Concrete coating is typically applied as a cement mortar or a reinforced concrete layer. These are just some of the coating options available for steel pipes. The choice of coating will depend on factors such as the intended application, environmental conditions, and required durability. It is essential to select the appropriate coating to ensure the longevity and performance of the steel pipes in various industries.
Q:Can steel pipes be used for underground electrical conduits?
Yes, steel pipes can be used for underground electrical conduits. They are durable, strong, and provide excellent protection for the electrical wiring. However, it is essential to consider factors such as corrosion and grounding requirements before choosing steel pipes for underground electrical conduits.
Q:How are steel pipes used in fire protection systems?
Steel pipes are an integral part of fire protection systems, primarily used for the distribution of water or other fire suppressants in buildings. These pipes are known for their strength, durability, and resistance to high temperatures, making them ideal for withstanding the intense conditions of a fire. In fire protection systems, steel pipes are commonly used to create a network of pipes that deliver water to sprinkler heads or fire hydrants throughout a building. This network ensures that water is readily available to suppress or extinguish a fire in case of an emergency. One of the key advantages of steel pipes in fire protection systems is their ability to withstand the high pressure and flow rates required for effective fire suppression. Steel pipes can handle the forceful water flow needed to quickly and efficiently distribute water to the affected areas, helping to control and extinguish the fire as soon as possible. Additionally, steel pipes are resistant to corrosion, which is essential for maintaining the integrity of the fire protection system over time. Corrosion can weaken pipes, leading to leaks or even complete failure, which can be catastrophic in a fire situation. Steel pipes, however, have a longer lifespan and require less maintenance compared to other pipe materials, ensuring the system remains reliable and functional for years to come. Furthermore, steel pipes are often used in fire protection systems due to their fire resistance properties. Steel is inherently fire-resistant, meaning it can withstand high temperatures without deforming or losing its structural integrity. This is crucial in fire protection systems as it allows the pipes to remain intact and continue delivering water even in the midst of a fire, ensuring the safety of occupants and minimizing damage to the building. In summary, steel pipes play a vital role in fire protection systems by ensuring a reliable and efficient distribution of water or fire suppressants. Their strength, durability, resistance to high temperatures, and corrosion resistance make them an ideal choice for effectively combating fires and safeguarding lives and property.
Q:How are steel pipes coated for protection against external elements?
Steel pipes are coated for protection against external elements through a process called pipeline coating. This involves applying a layer of protective material, such as epoxy or polyethylene, onto the surface of the steel pipes. The coating acts as a barrier, preventing corrosion and damage from external factors like moisture, chemicals, and UV radiation. This protective coating ensures the longevity and durability of the steel pipes, even in harsh environments.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords