• Seamless Steel Pipe for Industrial Gas Cylinder System 1
  • Seamless Steel Pipe for Industrial Gas Cylinder System 2
  • Seamless Steel Pipe for Industrial Gas Cylinder System 3
Seamless Steel Pipe for Industrial Gas Cylinder

Seamless Steel Pipe for Industrial Gas Cylinder

Ref Price:
get latest price
Loading Port:
China Main Port
Payment Terms:
TT or LC
Min Order Qty:
5mt m.t.
Supply Capability:
5000 Tons Per Month m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Seamless Steel pipes

Application of Seamless Steel Pipe for for Industrial Gas Cylinder

The company products including seamless steel gas cylinder

for industry and medical gas use. We can make cylinder

 

Standard of Seamless Steel Pipe for for Industrial Gas Cylinder

apply to standard of DOT3AA, JIS8241, EN1964,ISO9809,GB5099, KSB6210.

 

Certificate of Seamless Steel Pipe for for Industrial Gas Cylinde

CCS,BV, LLODY'S, ABS.

 

Description of Seamless Steel Pipe for for Industrial Gas Cylinde 

Standard

GB5099

Material

34Mn2V/37Mn/30CrMo

Nominal Diameter

219/232/267/279/325(mm)

Water Capacity

20-80(L)

Nominal Height

815-1780(mm)

Nominal Weight

30.5-103(kg)

Service Pressure

15/20(MP)

Wall Thickness

4.7-7.0(mm)

 

Packing of Seamless Steel Pipe for for Industrial Gas Cylinde  

Black paint or varnish ,plastic caps with the both end

Seamless Steel Pipe for Industrial Gas Cylinder

Seamless Steel Pipe for Industrial Gas Cylinder

 

 

Q: What is the role of steel pipes in the construction of stadiums?
Steel pipes play a crucial role in the construction of stadiums as they are used for various purposes including structural support, drainage systems, and the installation of utilities such as water, gas, and electrical lines. These pipes provide the necessary strength and durability to support the weight of the stadium's roof, seating areas, and other infrastructure. Additionally, steel pipes enable efficient transportation of liquids and gases, ensuring proper functioning of the stadium's facilities.
Q: What are the quality control measures for steel pipe production?
Quality control measures for steel pipe production typically involve several steps to ensure the final product meets the required specifications and industry standards. These measures may include inspection of raw materials, such as the steel coils or plates, to ensure they meet the required chemical composition and mechanical properties. During manufacturing, various processes like forming, welding, and heat treatment are closely monitored to maintain dimensional accuracy and integrity. Non-destructive testing methods, such as ultrasonic or radiographic inspection, are often employed to detect any defects or anomalies in the pipes. Additionally, visual inspection, surface treatment assessment, and mechanical testing are conducted to assess the overall quality before the pipes are released for distribution.
Q: Are steel pipes suitable for use in coastal areas?
Yes, steel pipes are suitable for use in coastal areas. Steel is highly resistant to corrosion and can withstand the harsh environmental conditions typically found in coastal regions, such as saltwater spray and high humidity. Additionally, steel pipes offer excellent structural strength, making them well-suited for various applications including marine construction, offshore oil and gas platforms, and coastal infrastructure projects.
Q: What are the factors that affect the lifespan of steel pipes in different environments?
The factors that affect the lifespan of steel pipes in different environments include exposure to corrosive substances, temperature fluctuations, water quality, and mechanical stress.
Q: How are steel pipes used in the manufacturing of offshore wind turbines?
Steel pipes are used in the manufacturing of offshore wind turbines for various purposes such as supporting the turbine structure, housing electrical cables, and transporting fluids like hydraulic oil and cooling water. These pipes provide structural strength, corrosion resistance, and durability, ensuring the stability and functionality of the turbines in the harsh offshore environment.
Q: How long is the seamless tube?
Seamless steel tube specification: 8-1240 * 1-200mm
Q: Are steel pipes suitable for structural applications?
Indeed, steel pipes prove to be appropriate for structural applications. Renowned for their strength, durability, and versatility, steel pipes emerge as an ideal choice for diverse structural purposes. They can be utilized in constructions, bridges, stadiums, and other edifices to provide essential support and stability. Steel pipes exhibit remarkable tensile strength, enabling them to withstand substantial burdens and resist deformation when subjected to pressure. Moreover, their resistance to corrosion renders them dependable for structural applications, even in severe environments. The utilization of steel pipes in structural applications is further amplified by their cost-effectiveness and ease of installation. In summary, owing to their strength, durability, versatility, and cost-effectiveness, steel pipes remain a favored option within the construction industry.
Q: What is the fatigue strength of steel pipes?
The fatigue strength of steel pipes refers to their ability to withstand repeated cyclic loading without experiencing failure. It is a critical characteristic for pipes that are subject to dynamic or fluctuating loads, such as those used in the oil and gas industry, transportation infrastructure, or industrial applications. The fatigue strength of steel pipes can vary depending on several factors, including the steel grade, pipe dimensions, manufacturing process, surface conditions, and environmental factors. Steel pipes with higher tensile strength and toughness generally exhibit better fatigue resistance. The fatigue strength is typically determined through fatigue testing, which involves subjecting the pipes to cyclic loading until failure occurs. The results are then used to establish a fatigue curve or S-N curve, which represents the relationship between the applied stress amplitude and the number of cycles to failure. The fatigue strength is commonly expressed as the stress amplitude required to cause failure after a specific number of cycles, such as the stress amplitude at 10 million cycles (S-N10^7). It is important to note that fatigue strength is influenced by other factors, such as mean stress, surface finish, and loading frequency, which may need to be considered in specific applications. Overall, the fatigue strength of steel pipes is a crucial factor to consider in engineering design and maintenance, as it helps ensure the long-term integrity and reliability of the pipes under cyclic loading conditions.
Q: What are the different grades of steel used for pipes?
Pipes are manufactured using various grades of steel, each possessing unique properties and applications. Some commonly utilized grades include: 1. Carbon Steel: This type of steel is widely employed in pipe manufacturing, particularly for low-pressure purposes. It contains a low carbon content, typically less than 0.30%, facilitating easy welding and forming. Carbon steel pipes are known for their durability and cost-effectiveness, making them suitable for diverse industries. 2. Stainless Steel: Stainless steel pipes are renowned for their corrosion resistance and high strength. They consist of an alloy of iron and chromium, with additional elements like nickel and molybdenum enhancing their properties. These pipes find extensive usage in industries such as chemical processing, food production, and oil and gas, where corrosion resistance is vital. 3. Alloy Steel: Alloy steel pipes are created by incorporating elements like manganese, chromium, or nickel into carbon steel. This enhances their strength, hardness, and wear resistance, rendering them appropriate for high-pressure and high-temperature applications. Industries such as power generation, petrochemical, and aerospace frequently employ alloy steel pipes. 4. Duplex Steel: Duplex steel represents a type of stainless steel that combines austenite and ferrite phases. This results in a material possessing exceptional strength, corrosion resistance, and toughness. Duplex steel pipes are commonly utilized in offshore oil and gas platforms, as well as in chemical and petrochemical industries. 5. Low-Temperature Steel: Low-temperature steel is specifically designed to withstand extremely cold temperatures without becoming brittle. These pipes find significant use in industries such as cryogenic storage, LNG transportation, and refrigeration. Choosing the appropriate grade of steel is crucial to ensure optimal pipe performance and longevity. Factors such as temperature, pressure, corrosion resistance, and cost should be taken into account when selecting the steel grade for pipes.
Q: What are the different types of steel pipe elbows?
There are various industries and applications that commonly utilize different types of steel pipe elbows. These types encompass: 1. 90-degree elbows: Employed when redirecting fluid or gas flow requires a sharp 90-degree bend. They find extensive use in plumbing, construction, and industrial piping systems. 2. 45-degree elbows: Similar to 90-degree elbows, these elbows alter flow direction, but with a smaller angle. They are suitable for situations requiring a more gradual change in flow direction. 3. Long radius elbows: Differing from standard elbows, long radius elbows possess a larger curvature radius. This design minimizes fluid friction and pressure drop, making them ideal for applications necessitating smoother flow, such as high-flow systems or those involving viscous fluids. 4. Short radius elbows: In contrast, short radius elbows feature a smaller curvature radius. They are generally utilized in confined spaces where a compact design is essential, although they may lead to increased fluid friction and higher pressure drops. 5. Reducing elbows: These elbows are ideal for connecting pipes of varying diameters. With one end having a larger diameter and the other end with a smaller diameter, they enable a seamless transition between two pipes of different sizes. 6. Mitered elbows: Mitered elbows are tailor-made elbows fabricated by cutting and welding multiple pipe sections at specific angles. They are frequently employed when standard elbows cannot accommodate the required angle or when a unique design is necessary. In conclusion, the selection of the appropriate type of steel pipe elbow depends on factors such as the specific application, fluid flow requirements, space limitations, and compatibility with the piping system.
We are a professional manufacturer of seamless steel pipe of large diameter seamless steel pipe special large modern enterprise R & D, according to ASME, ASTM, API, EN, GB and other standard production maximum diameter of 1200mm, maximum wall thickness of 200mm carbon steel , alloy steel and stainless steel products. Such products are mainly used in nuclear power, super / ultra-supercritical power plants, ethylene, oil refining, coal chemical industry, oil and natural gas, marine engineering, military, metallurgy and the large-scale structure and other important areas.

1. Manufacturer Overview

Location Zhejiang, China
Year Established 2007
Annual Output Value Below US$1 Million
Main Markets
Company Certifications API;ISO9001

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a) Trade Capacity
Nearest Port Shanghai
Export Percentage 41% - 50%
No.of Employees in Trade Department 300-500 People
Language Spoken: English; Chinese
b) Factory Information
Factory Size: 360,000 Squre meters
No. of Production Lines Above 10
Contract Manufacturing OEM Service Offered;Design Service Offered
Product Price Range High Average

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords